Metamath Proof Explorer


Theorem smfpimbor1lem1

Description: Every open set belongs to T . This is the second step in the proof of Proposition 121E (f) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem1.s
|- ( ph -> S e. SAlg )
smfpimbor1lem1.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpimbor1lem1.a
|- D = dom F
smfpimbor1lem1.j
|- J = ( topGen ` ran (,) )
smfpimbor1lem1.8
|- ( ph -> G e. J )
smfpimbor1lem1.t
|- T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) }
Assertion smfpimbor1lem1
|- ( ph -> G e. T )

Proof

Step Hyp Ref Expression
1 smfpimbor1lem1.s
 |-  ( ph -> S e. SAlg )
2 smfpimbor1lem1.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
3 smfpimbor1lem1.a
 |-  D = dom F
4 smfpimbor1lem1.j
 |-  J = ( topGen ` ran (,) )
5 smfpimbor1lem1.8
 |-  ( ph -> G e. J )
6 smfpimbor1lem1.t
 |-  T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) }
7 4 5 tgqioo2
 |-  ( ph -> E. q ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) )
8 simprr
 |-  ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> G = U. q )
9 1 2 3 6 smfresal
 |-  ( ph -> T e. SAlg )
10 9 adantr
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> T e. SAlg )
11 iooex
 |-  (,) e. _V
12 11 imaexi
 |-  ( (,) " ( QQ X. QQ ) ) e. _V
13 12 a1i
 |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) e. _V )
14 id
 |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q C_ ( (,) " ( QQ X. QQ ) ) )
15 13 14 ssexd
 |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q e. _V )
16 15 adantl
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q e. _V )
17 simpr
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q C_ ( (,) " ( QQ X. QQ ) ) )
18 ioofun
 |-  Fun (,)
19 18 a1i
 |-  ( q e. ( (,) " ( QQ X. QQ ) ) -> Fun (,) )
20 id
 |-  ( q e. ( (,) " ( QQ X. QQ ) ) -> q e. ( (,) " ( QQ X. QQ ) ) )
21 fvelima
 |-  ( ( Fun (,) /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q )
22 19 20 21 syl2anc
 |-  ( q e. ( (,) " ( QQ X. QQ ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q )
23 22 adantl
 |-  ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q )
24 id
 |-  ( ( (,) ` p ) = q -> ( (,) ` p ) = q )
25 24 eqcomd
 |-  ( ( (,) ` p ) = q -> q = ( (,) ` p ) )
26 25 adantl
 |-  ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( (,) ` p ) )
27 1st2nd2
 |-  ( p e. ( QQ X. QQ ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. )
28 27 fveq2d
 |-  ( p e. ( QQ X. QQ ) -> ( (,) ` p ) = ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) )
29 df-ov
 |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) = ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. )
30 29 eqcomi
 |-  ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) = ( ( 1st ` p ) (,) ( 2nd ` p ) )
31 30 a1i
 |-  ( p e. ( QQ X. QQ ) -> ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) )
32 28 31 eqtrd
 |-  ( p e. ( QQ X. QQ ) -> ( (,) ` p ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) )
33 32 adantr
 |-  ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> ( (,) ` p ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) )
34 26 33 eqtrd
 |-  ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( ( 1st ` p ) (,) ( 2nd ` p ) ) )
35 34 3adant1
 |-  ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( ( 1st ` p ) (,) ( 2nd ` p ) ) )
36 ioossre
 |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) C_ RR
37 ovex
 |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. _V
38 37 elpw
 |-  ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR <-> ( ( 1st ` p ) (,) ( 2nd ` p ) ) C_ RR )
39 36 38 mpbir
 |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR
40 39 a1i
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR )
41 1 adantr
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> S e. SAlg )
42 2 adantr
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> F e. ( SMblFn ` S ) )
43 xp1st
 |-  ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. QQ )
44 43 qred
 |-  ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. RR )
45 44 rexrd
 |-  ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. RR* )
46 45 adantl
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( 1st ` p ) e. RR* )
47 xp2nd
 |-  ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. QQ )
48 47 qred
 |-  ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. RR )
49 48 rexrd
 |-  ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. RR* )
50 49 adantl
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( 2nd ` p ) e. RR* )
51 41 42 3 46 50 smfpimioo
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) )
52 40 51 jca
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR /\ ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) )
53 imaeq2
 |-  ( e = ( ( 1st ` p ) (,) ( 2nd ` p ) ) -> ( `' F " e ) = ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) )
54 53 eleq1d
 |-  ( e = ( ( 1st ` p ) (,) ( 2nd ` p ) ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) )
55 54 6 elrab2
 |-  ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T <-> ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR /\ ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) )
56 52 55 sylibr
 |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T )
57 56 3adant3
 |-  ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T )
58 35 57 eqeltrd
 |-  ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q e. T )
59 58 3exp
 |-  ( ph -> ( p e. ( QQ X. QQ ) -> ( ( (,) ` p ) = q -> q e. T ) ) )
60 59 rexlimdv
 |-  ( ph -> ( E. p e. ( QQ X. QQ ) ( (,) ` p ) = q -> q e. T ) )
61 60 adantr
 |-  ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> ( E. p e. ( QQ X. QQ ) ( (,) ` p ) = q -> q e. T ) )
62 23 61 mpd
 |-  ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> q e. T )
63 62 ssd
 |-  ( ph -> ( (,) " ( QQ X. QQ ) ) C_ T )
64 63 adantr
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> ( (,) " ( QQ X. QQ ) ) C_ T )
65 17 64 sstrd
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q C_ T )
66 16 65 elpwd
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q e. ~P T )
67 ssdomg
 |-  ( ( (,) " ( QQ X. QQ ) ) e. _V -> ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ ( (,) " ( QQ X. QQ ) ) ) )
68 12 67 ax-mp
 |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ ( (,) " ( QQ X. QQ ) ) )
69 qct
 |-  QQ ~<_ _om
70 69 69 pm3.2i
 |-  ( QQ ~<_ _om /\ QQ ~<_ _om )
71 xpct
 |-  ( ( QQ ~<_ _om /\ QQ ~<_ _om ) -> ( QQ X. QQ ) ~<_ _om )
72 70 71 ax-mp
 |-  ( QQ X. QQ ) ~<_ _om
73 fimact
 |-  ( ( ( QQ X. QQ ) ~<_ _om /\ Fun (,) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om )
74 72 18 73 mp2an
 |-  ( (,) " ( QQ X. QQ ) ) ~<_ _om
75 74 a1i
 |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om )
76 domtr
 |-  ( ( q ~<_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> q ~<_ _om )
77 68 75 76 syl2anc
 |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ _om )
78 77 adantl
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q ~<_ _om )
79 10 66 78 salunicl
 |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> U. q e. T )
80 79 adantrr
 |-  ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> U. q e. T )
81 8 80 eqeltrd
 |-  ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> G e. T )
82 81 ex
 |-  ( ph -> ( ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) -> G e. T ) )
83 82 exlimdv
 |-  ( ph -> ( E. q ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) -> G e. T ) )
84 7 83 mpd
 |-  ( ph -> G e. T )