| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimbor1lem1.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 2 |  | smfpimbor1lem1.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 3 |  | smfpimbor1lem1.a |  |-  D = dom F | 
						
							| 4 |  | smfpimbor1lem1.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 5 |  | smfpimbor1lem1.8 |  |-  ( ph -> G e. J ) | 
						
							| 6 |  | smfpimbor1lem1.t |  |-  T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } | 
						
							| 7 | 4 5 | tgqioo2 |  |-  ( ph -> E. q ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) | 
						
							| 8 |  | simprr |  |-  ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> G = U. q ) | 
						
							| 9 | 1 2 3 6 | smfresal |  |-  ( ph -> T e. SAlg ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> T e. SAlg ) | 
						
							| 11 |  | iooex |  |-  (,) e. _V | 
						
							| 12 | 11 | imaexi |  |-  ( (,) " ( QQ X. QQ ) ) e. _V | 
						
							| 13 | 12 | a1i |  |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) e. _V ) | 
						
							| 14 |  | id |  |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q C_ ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 15 | 13 14 | ssexd |  |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q e. _V ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q e. _V ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q C_ ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 18 |  | ioofun |  |-  Fun (,) | 
						
							| 19 | 18 | a1i |  |-  ( q e. ( (,) " ( QQ X. QQ ) ) -> Fun (,) ) | 
						
							| 20 |  | id |  |-  ( q e. ( (,) " ( QQ X. QQ ) ) -> q e. ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 21 |  | fvelima |  |-  ( ( Fun (,) /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q ) | 
						
							| 22 | 19 20 21 | syl2anc |  |-  ( q e. ( (,) " ( QQ X. QQ ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q ) | 
						
							| 24 |  | id |  |-  ( ( (,) ` p ) = q -> ( (,) ` p ) = q ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( (,) ` p ) = q -> q = ( (,) ` p ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( (,) ` p ) ) | 
						
							| 27 |  | 1st2nd2 |  |-  ( p e. ( QQ X. QQ ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 28 | 27 | fveq2d |  |-  ( p e. ( QQ X. QQ ) -> ( (,) ` p ) = ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) ) | 
						
							| 29 |  | df-ov |  |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) = ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 30 | 29 | eqcomi |  |-  ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) | 
						
							| 31 | 30 | a1i |  |-  ( p e. ( QQ X. QQ ) -> ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) | 
						
							| 32 | 28 31 | eqtrd |  |-  ( p e. ( QQ X. QQ ) -> ( (,) ` p ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> ( (,) ` p ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) | 
						
							| 34 | 26 33 | eqtrd |  |-  ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) | 
						
							| 35 | 34 | 3adant1 |  |-  ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) | 
						
							| 36 |  | ioossre |  |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) C_ RR | 
						
							| 37 |  | ovex |  |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. _V | 
						
							| 38 | 37 | elpw |  |-  ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR <-> ( ( 1st ` p ) (,) ( 2nd ` p ) ) C_ RR ) | 
						
							| 39 | 36 38 | mpbir |  |-  ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR | 
						
							| 40 | 39 | a1i |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR ) | 
						
							| 41 | 1 | adantr |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> S e. SAlg ) | 
						
							| 42 | 2 | adantr |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> F e. ( SMblFn ` S ) ) | 
						
							| 43 |  | xp1st |  |-  ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. QQ ) | 
						
							| 44 | 43 | qred |  |-  ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. RR ) | 
						
							| 45 | 44 | rexrd |  |-  ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. RR* ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( 1st ` p ) e. RR* ) | 
						
							| 47 |  | xp2nd |  |-  ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. QQ ) | 
						
							| 48 | 47 | qred |  |-  ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. RR ) | 
						
							| 49 | 48 | rexrd |  |-  ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. RR* ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( 2nd ` p ) e. RR* ) | 
						
							| 51 | 41 42 3 46 50 | smfpimioo |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) | 
						
							| 52 | 40 51 | jca |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR /\ ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) ) | 
						
							| 53 |  | imaeq2 |  |-  ( e = ( ( 1st ` p ) (,) ( 2nd ` p ) ) -> ( `' F " e ) = ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) ) | 
						
							| 54 | 53 | eleq1d |  |-  ( e = ( ( 1st ` p ) (,) ( 2nd ` p ) ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) ) | 
						
							| 55 | 54 6 | elrab2 |  |-  ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T <-> ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR /\ ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) ) | 
						
							| 56 | 52 55 | sylibr |  |-  ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T ) | 
						
							| 57 | 56 | 3adant3 |  |-  ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T ) | 
						
							| 58 | 35 57 | eqeltrd |  |-  ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q e. T ) | 
						
							| 59 | 58 | 3exp |  |-  ( ph -> ( p e. ( QQ X. QQ ) -> ( ( (,) ` p ) = q -> q e. T ) ) ) | 
						
							| 60 | 59 | rexlimdv |  |-  ( ph -> ( E. p e. ( QQ X. QQ ) ( (,) ` p ) = q -> q e. T ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> ( E. p e. ( QQ X. QQ ) ( (,) ` p ) = q -> q e. T ) ) | 
						
							| 62 | 23 61 | mpd |  |-  ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> q e. T ) | 
						
							| 63 | 62 | ssd |  |-  ( ph -> ( (,) " ( QQ X. QQ ) ) C_ T ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> ( (,) " ( QQ X. QQ ) ) C_ T ) | 
						
							| 65 | 17 64 | sstrd |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q C_ T ) | 
						
							| 66 | 16 65 | elpwd |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q e. ~P T ) | 
						
							| 67 |  | ssdomg |  |-  ( ( (,) " ( QQ X. QQ ) ) e. _V -> ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ ( (,) " ( QQ X. QQ ) ) ) ) | 
						
							| 68 | 12 67 | ax-mp |  |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ ( (,) " ( QQ X. QQ ) ) ) | 
						
							| 69 |  | qct |  |-  QQ ~<_ _om | 
						
							| 70 | 69 69 | pm3.2i |  |-  ( QQ ~<_ _om /\ QQ ~<_ _om ) | 
						
							| 71 |  | xpct |  |-  ( ( QQ ~<_ _om /\ QQ ~<_ _om ) -> ( QQ X. QQ ) ~<_ _om ) | 
						
							| 72 | 70 71 | ax-mp |  |-  ( QQ X. QQ ) ~<_ _om | 
						
							| 73 |  | fimact |  |-  ( ( ( QQ X. QQ ) ~<_ _om /\ Fun (,) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) | 
						
							| 74 | 72 18 73 | mp2an |  |-  ( (,) " ( QQ X. QQ ) ) ~<_ _om | 
						
							| 75 | 74 | a1i |  |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) | 
						
							| 76 |  | domtr |  |-  ( ( q ~<_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> q ~<_ _om ) | 
						
							| 77 | 68 75 76 | syl2anc |  |-  ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ _om ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q ~<_ _om ) | 
						
							| 79 | 10 66 78 | salunicl |  |-  ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> U. q e. T ) | 
						
							| 80 | 79 | adantrr |  |-  ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> U. q e. T ) | 
						
							| 81 | 8 80 | eqeltrd |  |-  ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> G e. T ) | 
						
							| 82 | 81 | ex |  |-  ( ph -> ( ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) -> G e. T ) ) | 
						
							| 83 | 82 | exlimdv |  |-  ( ph -> ( E. q ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) -> G e. T ) ) | 
						
							| 84 | 7 83 | mpd |  |-  ( ph -> G e. T ) |