Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimbor1lem1.s |
|- ( ph -> S e. SAlg ) |
2 |
|
smfpimbor1lem1.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
3 |
|
smfpimbor1lem1.a |
|- D = dom F |
4 |
|
smfpimbor1lem1.j |
|- J = ( topGen ` ran (,) ) |
5 |
|
smfpimbor1lem1.8 |
|- ( ph -> G e. J ) |
6 |
|
smfpimbor1lem1.t |
|- T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } |
7 |
4 5
|
tgqioo2 |
|- ( ph -> E. q ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) |
8 |
|
simprr |
|- ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> G = U. q ) |
9 |
1 2 3 6
|
smfresal |
|- ( ph -> T e. SAlg ) |
10 |
9
|
adantr |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> T e. SAlg ) |
11 |
|
iooex |
|- (,) e. _V |
12 |
11
|
imaexi |
|- ( (,) " ( QQ X. QQ ) ) e. _V |
13 |
12
|
a1i |
|- ( q C_ ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) e. _V ) |
14 |
|
id |
|- ( q C_ ( (,) " ( QQ X. QQ ) ) -> q C_ ( (,) " ( QQ X. QQ ) ) ) |
15 |
13 14
|
ssexd |
|- ( q C_ ( (,) " ( QQ X. QQ ) ) -> q e. _V ) |
16 |
15
|
adantl |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q e. _V ) |
17 |
|
simpr |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q C_ ( (,) " ( QQ X. QQ ) ) ) |
18 |
|
ioofun |
|- Fun (,) |
19 |
18
|
a1i |
|- ( q e. ( (,) " ( QQ X. QQ ) ) -> Fun (,) ) |
20 |
|
id |
|- ( q e. ( (,) " ( QQ X. QQ ) ) -> q e. ( (,) " ( QQ X. QQ ) ) ) |
21 |
|
fvelima |
|- ( ( Fun (,) /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q ) |
22 |
19 20 21
|
syl2anc |
|- ( q e. ( (,) " ( QQ X. QQ ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q ) |
23 |
22
|
adantl |
|- ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> E. p e. ( QQ X. QQ ) ( (,) ` p ) = q ) |
24 |
|
id |
|- ( ( (,) ` p ) = q -> ( (,) ` p ) = q ) |
25 |
24
|
eqcomd |
|- ( ( (,) ` p ) = q -> q = ( (,) ` p ) ) |
26 |
25
|
adantl |
|- ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( (,) ` p ) ) |
27 |
|
1st2nd2 |
|- ( p e. ( QQ X. QQ ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
28 |
27
|
fveq2d |
|- ( p e. ( QQ X. QQ ) -> ( (,) ` p ) = ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) ) |
29 |
|
df-ov |
|- ( ( 1st ` p ) (,) ( 2nd ` p ) ) = ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
30 |
29
|
eqcomi |
|- ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) |
31 |
30
|
a1i |
|- ( p e. ( QQ X. QQ ) -> ( (,) ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) |
32 |
28 31
|
eqtrd |
|- ( p e. ( QQ X. QQ ) -> ( (,) ` p ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) |
33 |
32
|
adantr |
|- ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> ( (,) ` p ) = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) |
34 |
26 33
|
eqtrd |
|- ( ( p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) |
35 |
34
|
3adant1 |
|- ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q = ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) |
36 |
|
ioossre |
|- ( ( 1st ` p ) (,) ( 2nd ` p ) ) C_ RR |
37 |
|
ovex |
|- ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. _V |
38 |
37
|
elpw |
|- ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR <-> ( ( 1st ` p ) (,) ( 2nd ` p ) ) C_ RR ) |
39 |
36 38
|
mpbir |
|- ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR |
40 |
39
|
a1i |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR ) |
41 |
1
|
adantr |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> S e. SAlg ) |
42 |
2
|
adantr |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> F e. ( SMblFn ` S ) ) |
43 |
|
xp1st |
|- ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. QQ ) |
44 |
43
|
qred |
|- ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. RR ) |
45 |
44
|
rexrd |
|- ( p e. ( QQ X. QQ ) -> ( 1st ` p ) e. RR* ) |
46 |
45
|
adantl |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( 1st ` p ) e. RR* ) |
47 |
|
xp2nd |
|- ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. QQ ) |
48 |
47
|
qred |
|- ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. RR ) |
49 |
48
|
rexrd |
|- ( p e. ( QQ X. QQ ) -> ( 2nd ` p ) e. RR* ) |
50 |
49
|
adantl |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( 2nd ` p ) e. RR* ) |
51 |
41 42 3 46 50
|
smfpimioo |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) |
52 |
40 51
|
jca |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR /\ ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) ) |
53 |
|
imaeq2 |
|- ( e = ( ( 1st ` p ) (,) ( 2nd ` p ) ) -> ( `' F " e ) = ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) ) |
54 |
53
|
eleq1d |
|- ( e = ( ( 1st ` p ) (,) ( 2nd ` p ) ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) ) |
55 |
54 6
|
elrab2 |
|- ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T <-> ( ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. ~P RR /\ ( `' F " ( ( 1st ` p ) (,) ( 2nd ` p ) ) ) e. ( S |`t D ) ) ) |
56 |
52 55
|
sylibr |
|- ( ( ph /\ p e. ( QQ X. QQ ) ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T ) |
57 |
56
|
3adant3 |
|- ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> ( ( 1st ` p ) (,) ( 2nd ` p ) ) e. T ) |
58 |
35 57
|
eqeltrd |
|- ( ( ph /\ p e. ( QQ X. QQ ) /\ ( (,) ` p ) = q ) -> q e. T ) |
59 |
58
|
3exp |
|- ( ph -> ( p e. ( QQ X. QQ ) -> ( ( (,) ` p ) = q -> q e. T ) ) ) |
60 |
59
|
rexlimdv |
|- ( ph -> ( E. p e. ( QQ X. QQ ) ( (,) ` p ) = q -> q e. T ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> ( E. p e. ( QQ X. QQ ) ( (,) ` p ) = q -> q e. T ) ) |
62 |
23 61
|
mpd |
|- ( ( ph /\ q e. ( (,) " ( QQ X. QQ ) ) ) -> q e. T ) |
63 |
62
|
ssd |
|- ( ph -> ( (,) " ( QQ X. QQ ) ) C_ T ) |
64 |
63
|
adantr |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> ( (,) " ( QQ X. QQ ) ) C_ T ) |
65 |
17 64
|
sstrd |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q C_ T ) |
66 |
16 65
|
elpwd |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q e. ~P T ) |
67 |
|
ssdomg |
|- ( ( (,) " ( QQ X. QQ ) ) e. _V -> ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ ( (,) " ( QQ X. QQ ) ) ) ) |
68 |
12 67
|
ax-mp |
|- ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ ( (,) " ( QQ X. QQ ) ) ) |
69 |
|
qct |
|- QQ ~<_ _om |
70 |
69 69
|
pm3.2i |
|- ( QQ ~<_ _om /\ QQ ~<_ _om ) |
71 |
|
xpct |
|- ( ( QQ ~<_ _om /\ QQ ~<_ _om ) -> ( QQ X. QQ ) ~<_ _om ) |
72 |
70 71
|
ax-mp |
|- ( QQ X. QQ ) ~<_ _om |
73 |
|
fimact |
|- ( ( ( QQ X. QQ ) ~<_ _om /\ Fun (,) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) |
74 |
72 18 73
|
mp2an |
|- ( (,) " ( QQ X. QQ ) ) ~<_ _om |
75 |
74
|
a1i |
|- ( q C_ ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) |
76 |
|
domtr |
|- ( ( q ~<_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> q ~<_ _om ) |
77 |
68 75 76
|
syl2anc |
|- ( q C_ ( (,) " ( QQ X. QQ ) ) -> q ~<_ _om ) |
78 |
77
|
adantl |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> q ~<_ _om ) |
79 |
10 66 78
|
salunicl |
|- ( ( ph /\ q C_ ( (,) " ( QQ X. QQ ) ) ) -> U. q e. T ) |
80 |
79
|
adantrr |
|- ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> U. q e. T ) |
81 |
8 80
|
eqeltrd |
|- ( ( ph /\ ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) ) -> G e. T ) |
82 |
81
|
ex |
|- ( ph -> ( ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) -> G e. T ) ) |
83 |
82
|
exlimdv |
|- ( ph -> ( E. q ( q C_ ( (,) " ( QQ X. QQ ) ) /\ G = U. q ) -> G e. T ) ) |
84 |
7 83
|
mpd |
|- ( ph -> G e. T ) |