| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimbor1lem2.s |
|- ( ph -> S e. SAlg ) |
| 2 |
|
smfpimbor1lem2.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 3 |
|
smfpimbor1lem2.a |
|- D = dom F |
| 4 |
|
smfpimbor1lem2.j |
|- J = ( topGen ` ran (,) ) |
| 5 |
|
smfpimbor1lem2.b |
|- B = ( SalGen ` J ) |
| 6 |
|
smfpimbor1lem2.e |
|- ( ph -> E e. B ) |
| 7 |
|
smfpimbor1lem2.p |
|- P = ( `' F " E ) |
| 8 |
|
smfpimbor1lem2.t |
|- T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } |
| 9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 10 |
4 9
|
eqeltri |
|- J e. Top |
| 11 |
10
|
a1i |
|- ( ph -> J e. Top ) |
| 12 |
1 2 3 8
|
smfresal |
|- ( ph -> T e. SAlg ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ x e. J ) -> S e. SAlg ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ x e. J ) -> F e. ( SMblFn ` S ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. J ) -> x e. J ) |
| 16 |
13 14 3 4 15 8
|
smfpimbor1lem1 |
|- ( ( ph /\ x e. J ) -> x e. T ) |
| 17 |
16
|
ssd |
|- ( ph -> J C_ T ) |
| 18 |
|
nfcv |
|- F/_ e x |
| 19 |
|
nfrab1 |
|- F/_ e { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } |
| 20 |
8 19
|
nfcxfr |
|- F/_ e T |
| 21 |
18 20
|
eluni2f |
|- ( x e. U. T <-> E. e e. T x e. e ) |
| 22 |
21
|
biimpi |
|- ( x e. U. T -> E. e e. T x e. e ) |
| 23 |
20
|
nfuni |
|- F/_ e U. T |
| 24 |
18 23
|
nfel |
|- F/ e x e. U. T |
| 25 |
|
nfv |
|- F/ e x e. RR |
| 26 |
8
|
eleq2i |
|- ( e e. T <-> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) |
| 27 |
26
|
biimpi |
|- ( e e. T -> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) |
| 28 |
|
rabidim1 |
|- ( e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } -> e e. ~P RR ) |
| 29 |
27 28
|
syl |
|- ( e e. T -> e e. ~P RR ) |
| 30 |
|
elpwi |
|- ( e e. ~P RR -> e C_ RR ) |
| 31 |
29 30
|
syl |
|- ( e e. T -> e C_ RR ) |
| 32 |
31
|
adantr |
|- ( ( e e. T /\ x e. e ) -> e C_ RR ) |
| 33 |
|
simpr |
|- ( ( e e. T /\ x e. e ) -> x e. e ) |
| 34 |
32 33
|
sseldd |
|- ( ( e e. T /\ x e. e ) -> x e. RR ) |
| 35 |
34
|
ex |
|- ( e e. T -> ( x e. e -> x e. RR ) ) |
| 36 |
35
|
a1i |
|- ( x e. U. T -> ( e e. T -> ( x e. e -> x e. RR ) ) ) |
| 37 |
24 25 36
|
rexlimd |
|- ( x e. U. T -> ( E. e e. T x e. e -> x e. RR ) ) |
| 38 |
22 37
|
mpd |
|- ( x e. U. T -> x e. RR ) |
| 39 |
38
|
rgen |
|- A. x e. U. T x e. RR |
| 40 |
|
dfss3 |
|- ( U. T C_ RR <-> A. x e. U. T x e. RR ) |
| 41 |
39 40
|
mpbir |
|- U. T C_ RR |
| 42 |
41
|
a1i |
|- ( ph -> U. T C_ RR ) |
| 43 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 44 |
4
|
eqcomi |
|- ( topGen ` ran (,) ) = J |
| 45 |
44
|
unieqi |
|- U. ( topGen ` ran (,) ) = U. J |
| 46 |
43 45
|
eqtr2i |
|- U. J = RR |
| 47 |
46
|
a1i |
|- ( ph -> U. J = RR ) |
| 48 |
47
|
eqcomd |
|- ( ph -> RR = U. J ) |
| 49 |
17
|
unissd |
|- ( ph -> U. J C_ U. T ) |
| 50 |
48 49
|
eqsstrd |
|- ( ph -> RR C_ U. T ) |
| 51 |
42 50
|
eqssd |
|- ( ph -> U. T = RR ) |
| 52 |
51 47
|
eqtr4d |
|- ( ph -> U. T = U. J ) |
| 53 |
11 5 12 17 52
|
salgenss |
|- ( ph -> B C_ T ) |
| 54 |
53 6
|
sseldd |
|- ( ph -> E e. T ) |
| 55 |
|
imaeq2 |
|- ( e = E -> ( `' F " e ) = ( `' F " E ) ) |
| 56 |
55
|
eleq1d |
|- ( e = E -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " E ) e. ( S |`t D ) ) ) |
| 57 |
56 8
|
elrab2 |
|- ( E e. T <-> ( E e. ~P RR /\ ( `' F " E ) e. ( S |`t D ) ) ) |
| 58 |
54 57
|
sylib |
|- ( ph -> ( E e. ~P RR /\ ( `' F " E ) e. ( S |`t D ) ) ) |
| 59 |
58
|
simprd |
|- ( ph -> ( `' F " E ) e. ( S |`t D ) ) |
| 60 |
7 59
|
eqeltrid |
|- ( ph -> P e. ( S |`t D ) ) |