| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimbor1lem2.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 2 |  | smfpimbor1lem2.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 3 |  | smfpimbor1lem2.a |  |-  D = dom F | 
						
							| 4 |  | smfpimbor1lem2.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 5 |  | smfpimbor1lem2.b |  |-  B = ( SalGen ` J ) | 
						
							| 6 |  | smfpimbor1lem2.e |  |-  ( ph -> E e. B ) | 
						
							| 7 |  | smfpimbor1lem2.p |  |-  P = ( `' F " E ) | 
						
							| 8 |  | smfpimbor1lem2.t |  |-  T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } | 
						
							| 9 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 10 | 4 9 | eqeltri |  |-  J e. Top | 
						
							| 11 | 10 | a1i |  |-  ( ph -> J e. Top ) | 
						
							| 12 | 1 2 3 8 | smfresal |  |-  ( ph -> T e. SAlg ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ x e. J ) -> S e. SAlg ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ x e. J ) -> F e. ( SMblFn ` S ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ x e. J ) -> x e. J ) | 
						
							| 16 | 13 14 3 4 15 8 | smfpimbor1lem1 |  |-  ( ( ph /\ x e. J ) -> x e. T ) | 
						
							| 17 | 16 | ssd |  |-  ( ph -> J C_ T ) | 
						
							| 18 |  | nfcv |  |-  F/_ e x | 
						
							| 19 |  | nfrab1 |  |-  F/_ e { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } | 
						
							| 20 | 8 19 | nfcxfr |  |-  F/_ e T | 
						
							| 21 | 18 20 | eluni2f |  |-  ( x e. U. T <-> E. e e. T x e. e ) | 
						
							| 22 | 21 | biimpi |  |-  ( x e. U. T -> E. e e. T x e. e ) | 
						
							| 23 | 20 | nfuni |  |-  F/_ e U. T | 
						
							| 24 | 18 23 | nfel |  |-  F/ e x e. U. T | 
						
							| 25 |  | nfv |  |-  F/ e x e. RR | 
						
							| 26 | 8 | eleq2i |  |-  ( e e. T <-> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) | 
						
							| 27 | 26 | biimpi |  |-  ( e e. T -> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) | 
						
							| 28 |  | rabidim1 |  |-  ( e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } -> e e. ~P RR ) | 
						
							| 29 | 27 28 | syl |  |-  ( e e. T -> e e. ~P RR ) | 
						
							| 30 |  | elpwi |  |-  ( e e. ~P RR -> e C_ RR ) | 
						
							| 31 | 29 30 | syl |  |-  ( e e. T -> e C_ RR ) | 
						
							| 32 | 31 | adantr |  |-  ( ( e e. T /\ x e. e ) -> e C_ RR ) | 
						
							| 33 |  | simpr |  |-  ( ( e e. T /\ x e. e ) -> x e. e ) | 
						
							| 34 | 32 33 | sseldd |  |-  ( ( e e. T /\ x e. e ) -> x e. RR ) | 
						
							| 35 | 34 | ex |  |-  ( e e. T -> ( x e. e -> x e. RR ) ) | 
						
							| 36 | 35 | a1i |  |-  ( x e. U. T -> ( e e. T -> ( x e. e -> x e. RR ) ) ) | 
						
							| 37 | 24 25 36 | rexlimd |  |-  ( x e. U. T -> ( E. e e. T x e. e -> x e. RR ) ) | 
						
							| 38 | 22 37 | mpd |  |-  ( x e. U. T -> x e. RR ) | 
						
							| 39 | 38 | rgen |  |-  A. x e. U. T x e. RR | 
						
							| 40 |  | dfss3 |  |-  ( U. T C_ RR <-> A. x e. U. T x e. RR ) | 
						
							| 41 | 39 40 | mpbir |  |-  U. T C_ RR | 
						
							| 42 | 41 | a1i |  |-  ( ph -> U. T C_ RR ) | 
						
							| 43 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 44 | 4 | eqcomi |  |-  ( topGen ` ran (,) ) = J | 
						
							| 45 | 44 | unieqi |  |-  U. ( topGen ` ran (,) ) = U. J | 
						
							| 46 | 43 45 | eqtr2i |  |-  U. J = RR | 
						
							| 47 | 46 | a1i |  |-  ( ph -> U. J = RR ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ph -> RR = U. J ) | 
						
							| 49 | 17 | unissd |  |-  ( ph -> U. J C_ U. T ) | 
						
							| 50 | 48 49 | eqsstrd |  |-  ( ph -> RR C_ U. T ) | 
						
							| 51 | 42 50 | eqssd |  |-  ( ph -> U. T = RR ) | 
						
							| 52 | 51 47 | eqtr4d |  |-  ( ph -> U. T = U. J ) | 
						
							| 53 | 11 5 12 17 52 | salgenss |  |-  ( ph -> B C_ T ) | 
						
							| 54 | 53 6 | sseldd |  |-  ( ph -> E e. T ) | 
						
							| 55 |  | imaeq2 |  |-  ( e = E -> ( `' F " e ) = ( `' F " E ) ) | 
						
							| 56 | 55 | eleq1d |  |-  ( e = E -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " E ) e. ( S |`t D ) ) ) | 
						
							| 57 | 56 8 | elrab2 |  |-  ( E e. T <-> ( E e. ~P RR /\ ( `' F " E ) e. ( S |`t D ) ) ) | 
						
							| 58 | 54 57 | sylib |  |-  ( ph -> ( E e. ~P RR /\ ( `' F " E ) e. ( S |`t D ) ) ) | 
						
							| 59 | 58 | simprd |  |-  ( ph -> ( `' F " E ) e. ( S |`t D ) ) | 
						
							| 60 | 7 59 | eqeltrid |  |-  ( ph -> P e. ( S |`t D ) ) |