Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimbor1lem2.s | |
|
smfpimbor1lem2.f | |
||
smfpimbor1lem2.a | |
||
smfpimbor1lem2.j | |
||
smfpimbor1lem2.b | |
||
smfpimbor1lem2.e | |
||
smfpimbor1lem2.p | |
||
smfpimbor1lem2.t | |
||
Assertion | smfpimbor1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimbor1lem2.s | |
|
2 | smfpimbor1lem2.f | |
|
3 | smfpimbor1lem2.a | |
|
4 | smfpimbor1lem2.j | |
|
5 | smfpimbor1lem2.b | |
|
6 | smfpimbor1lem2.e | |
|
7 | smfpimbor1lem2.p | |
|
8 | smfpimbor1lem2.t | |
|
9 | retop | |
|
10 | 4 9 | eqeltri | |
11 | 10 | a1i | |
12 | 1 2 3 8 | smfresal | |
13 | 1 | adantr | |
14 | 2 | adantr | |
15 | simpr | |
|
16 | 13 14 3 4 15 8 | smfpimbor1lem1 | |
17 | 16 | ssd | |
18 | nfcv | |
|
19 | nfrab1 | |
|
20 | 8 19 | nfcxfr | |
21 | 18 20 | eluni2f | |
22 | 21 | biimpi | |
23 | 20 | nfuni | |
24 | 18 23 | nfel | |
25 | nfv | |
|
26 | 8 | eleq2i | |
27 | 26 | biimpi | |
28 | rabidim1 | |
|
29 | 27 28 | syl | |
30 | elpwi | |
|
31 | 29 30 | syl | |
32 | 31 | adantr | |
33 | simpr | |
|
34 | 32 33 | sseldd | |
35 | 34 | ex | |
36 | 35 | a1i | |
37 | 24 25 36 | rexlimd | |
38 | 22 37 | mpd | |
39 | 38 | rgen | |
40 | dfss3 | |
|
41 | 39 40 | mpbir | |
42 | 41 | a1i | |
43 | uniretop | |
|
44 | 4 | eqcomi | |
45 | 44 | unieqi | |
46 | 43 45 | eqtr2i | |
47 | 46 | a1i | |
48 | 47 | eqcomd | |
49 | 17 | unissd | |
50 | 48 49 | eqsstrd | |
51 | 42 50 | eqssd | |
52 | 51 47 | eqtr4d | |
53 | 11 5 12 17 52 | salgenss | |
54 | 53 6 | sseldd | |
55 | imaeq2 | |
|
56 | 55 | eleq1d | |
57 | 56 8 | elrab2 | |
58 | 54 57 | sylib | |
59 | 58 | simprd | |
60 | 7 59 | eqeltrid | |