Metamath Proof Explorer


Theorem smfpimbor1lem2

Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem2.s φSSAlg
smfpimbor1lem2.f φFSMblFnS
smfpimbor1lem2.a D=domF
smfpimbor1lem2.j J=topGenran.
smfpimbor1lem2.b B=SalGenJ
smfpimbor1lem2.e φEB
smfpimbor1lem2.p P=F-1E
smfpimbor1lem2.t T=e𝒫|F-1eS𝑡D
Assertion smfpimbor1lem2 φPS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimbor1lem2.s φSSAlg
2 smfpimbor1lem2.f φFSMblFnS
3 smfpimbor1lem2.a D=domF
4 smfpimbor1lem2.j J=topGenran.
5 smfpimbor1lem2.b B=SalGenJ
6 smfpimbor1lem2.e φEB
7 smfpimbor1lem2.p P=F-1E
8 smfpimbor1lem2.t T=e𝒫|F-1eS𝑡D
9 retop topGenran.Top
10 4 9 eqeltri JTop
11 10 a1i φJTop
12 1 2 3 8 smfresal φTSAlg
13 1 adantr φxJSSAlg
14 2 adantr φxJFSMblFnS
15 simpr φxJxJ
16 13 14 3 4 15 8 smfpimbor1lem1 φxJxT
17 16 ssd φJT
18 nfcv _ex
19 nfrab1 _ee𝒫|F-1eS𝑡D
20 8 19 nfcxfr _eT
21 18 20 eluni2f xTeTxe
22 21 biimpi xTeTxe
23 20 nfuni _eT
24 18 23 nfel exT
25 nfv ex
26 8 eleq2i eTee𝒫|F-1eS𝑡D
27 26 biimpi eTee𝒫|F-1eS𝑡D
28 rabidim1 ee𝒫|F-1eS𝑡De𝒫
29 27 28 syl eTe𝒫
30 elpwi e𝒫e
31 29 30 syl eTe
32 31 adantr eTxee
33 simpr eTxexe
34 32 33 sseldd eTxex
35 34 ex eTxex
36 35 a1i xTeTxex
37 24 25 36 rexlimd xTeTxex
38 22 37 mpd xTx
39 38 rgen xTx
40 dfss3 TxTx
41 39 40 mpbir T
42 41 a1i φT
43 uniretop =topGenran.
44 4 eqcomi topGenran.=J
45 44 unieqi topGenran.=J
46 43 45 eqtr2i J=
47 46 a1i φJ=
48 47 eqcomd φ=J
49 17 unissd φJT
50 48 49 eqsstrd φT
51 42 50 eqssd φT=
52 51 47 eqtr4d φT=J
53 11 5 12 17 52 salgenss φBT
54 53 6 sseldd φET
55 imaeq2 e=EF-1e=F-1E
56 55 eleq1d e=EF-1eS𝑡DF-1ES𝑡D
57 56 8 elrab2 ETE𝒫F-1ES𝑡D
58 54 57 sylib φE𝒫F-1ES𝑡D
59 58 simprd φF-1ES𝑡D
60 7 59 eqeltrid φPS𝑡D