Metamath Proof Explorer


Theorem smfpimbor1lem2

Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem2.s φ S SAlg
smfpimbor1lem2.f φ F SMblFn S
smfpimbor1lem2.a D = dom F
smfpimbor1lem2.j J = topGen ran .
smfpimbor1lem2.b B = SalGen J
smfpimbor1lem2.e φ E B
smfpimbor1lem2.p P = F -1 E
smfpimbor1lem2.t T = e 𝒫 | F -1 e S 𝑡 D
Assertion smfpimbor1lem2 φ P S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimbor1lem2.s φ S SAlg
2 smfpimbor1lem2.f φ F SMblFn S
3 smfpimbor1lem2.a D = dom F
4 smfpimbor1lem2.j J = topGen ran .
5 smfpimbor1lem2.b B = SalGen J
6 smfpimbor1lem2.e φ E B
7 smfpimbor1lem2.p P = F -1 E
8 smfpimbor1lem2.t T = e 𝒫 | F -1 e S 𝑡 D
9 retop topGen ran . Top
10 4 9 eqeltri J Top
11 10 a1i φ J Top
12 1 2 3 8 smfresal φ T SAlg
13 1 adantr φ x J S SAlg
14 2 adantr φ x J F SMblFn S
15 simpr φ x J x J
16 13 14 3 4 15 8 smfpimbor1lem1 φ x J x T
17 16 ssd φ J T
18 nfcv _ e x
19 nfrab1 _ e e 𝒫 | F -1 e S 𝑡 D
20 8 19 nfcxfr _ e T
21 18 20 eluni2f x T e T x e
22 21 biimpi x T e T x e
23 20 nfuni _ e T
24 18 23 nfel e x T
25 nfv e x
26 8 eleq2i e T e e 𝒫 | F -1 e S 𝑡 D
27 26 biimpi e T e e 𝒫 | F -1 e S 𝑡 D
28 rabidim1 e e 𝒫 | F -1 e S 𝑡 D e 𝒫
29 27 28 syl e T e 𝒫
30 elpwi e 𝒫 e
31 29 30 syl e T e
32 31 adantr e T x e e
33 simpr e T x e x e
34 32 33 sseldd e T x e x
35 34 ex e T x e x
36 35 a1i x T e T x e x
37 24 25 36 rexlimd x T e T x e x
38 22 37 mpd x T x
39 38 rgen x T x
40 dfss3 T x T x
41 39 40 mpbir T
42 41 a1i φ T
43 uniretop = topGen ran .
44 4 eqcomi topGen ran . = J
45 44 unieqi topGen ran . = J
46 43 45 eqtr2i J =
47 46 a1i φ J =
48 47 eqcomd φ = J
49 17 unissd φ J T
50 48 49 eqsstrd φ T
51 42 50 eqssd φ T =
52 51 47 eqtr4d φ T = J
53 11 5 12 17 52 salgenss φ B T
54 53 6 sseldd φ E T
55 imaeq2 e = E F -1 e = F -1 E
56 55 eleq1d e = E F -1 e S 𝑡 D F -1 E S 𝑡 D
57 56 8 elrab2 E T E 𝒫 F -1 E S 𝑡 D
58 54 57 sylib φ E 𝒫 F -1 E S 𝑡 D
59 58 simprd φ F -1 E S 𝑡 D
60 7 59 eqeltrid φ P S 𝑡 D