Metamath Proof Explorer


Theorem smfpimbor1

Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1.s φSSAlg
smfpimbor1.f φFSMblFnS
smfpimbor1.a D=domF
smfpimbor1.j J=topGenran.
smfpimbor1.b B=SalGenJ
smfpimbor1.e φEB
smfpimbor1.p P=F-1E
Assertion smfpimbor1 φPS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimbor1.s φSSAlg
2 smfpimbor1.f φFSMblFnS
3 smfpimbor1.a D=domF
4 smfpimbor1.j J=topGenran.
5 smfpimbor1.b B=SalGenJ
6 smfpimbor1.e φEB
7 smfpimbor1.p P=F-1E
8 eqid e𝒫|F-1eS𝑡D=e𝒫|F-1eS𝑡D
9 1 2 3 4 5 6 7 8 smfpimbor1lem2 φPS𝑡D