Metamath Proof Explorer


Theorem smfpimbor1

Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1.s φ S SAlg
smfpimbor1.f φ F SMblFn S
smfpimbor1.a D = dom F
smfpimbor1.j J = topGen ran .
smfpimbor1.b B = SalGen J
smfpimbor1.e φ E B
smfpimbor1.p P = F -1 E
Assertion smfpimbor1 φ P S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimbor1.s φ S SAlg
2 smfpimbor1.f φ F SMblFn S
3 smfpimbor1.a D = dom F
4 smfpimbor1.j J = topGen ran .
5 smfpimbor1.b B = SalGen J
6 smfpimbor1.e φ E B
7 smfpimbor1.p P = F -1 E
8 eqid e 𝒫 | F -1 e S 𝑡 D = e 𝒫 | F -1 e S 𝑡 D
9 1 2 3 4 5 6 7 8 smfpimbor1lem2 φ P S 𝑡 D