Metamath Proof Explorer


Theorem smf2id

Description: Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smf2id.j J=topGenran.
smf2id.b B=SalGenJ
smf2id.a φA
Assertion smf2id φxA2xSMblFnB

Proof

Step Hyp Ref Expression
1 smf2id.j J=topGenran.
2 smf2id.b B=SalGenJ
3 smf2id.a φA
4 nfv xφ
5 retop topGenran.Top
6 1 5 eqeltri JTop
7 6 a1i φJTop
8 7 2 salgencld φBSAlg
9 reex V
10 9 a1i φV
11 10 3 ssexd φAV
12 3 adantr φxAA
13 simpr φxAxA
14 12 13 sseldd φxAx
15 2re 2
16 15 a1i φ2
17 1 2 3 smfid φxAxSMblFnB
18 4 8 11 14 16 17 smfmulc1 φxA2xSMblFnB