Step |
Hyp |
Ref |
Expression |
1 |
|
smf2id.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
smf2id.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
3 |
|
smf2id.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
5 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
6 |
1 5
|
eqeltri |
⊢ 𝐽 ∈ Top |
7 |
6
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
8 |
7 2
|
salgencld |
⊢ ( 𝜑 → 𝐵 ∈ SAlg ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
11 |
10 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
14 |
12 13
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
15 |
|
2re |
⊢ 2 ∈ ℝ |
16 |
15
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
17 |
1 2 3
|
smfid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( SMblFn ‘ 𝐵 ) ) |
18 |
4 8 11 14 16 17
|
smfmulc1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 2 · 𝑥 ) ) ∈ ( SMblFn ‘ 𝐵 ) ) |