| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smf2id.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | smf2id.b | ⊢ 𝐵  =  ( SalGen ‘ 𝐽 ) | 
						
							| 3 |  | smf2id.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 5 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 6 | 1 5 | eqeltri | ⊢ 𝐽  ∈  Top | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 8 | 7 2 | salgencld | ⊢ ( 𝜑  →  𝐵  ∈  SAlg ) | 
						
							| 9 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 11 | 10 3 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  ℝ ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 14 | 12 13 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 15 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 17 | 1 2 3 | smfid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝑥 )  ∈  ( SMblFn ‘ 𝐵 ) ) | 
						
							| 18 | 4 8 11 14 16 17 | smfmulc1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 2  ·  𝑥 ) )  ∈  ( SMblFn ‘ 𝐵 ) ) |