Metamath Proof Explorer


Theorem smf2id

Description: Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smf2id.j 𝐽 = ( topGen ‘ ran (,) )
smf2id.b 𝐵 = ( SalGen ‘ 𝐽 )
smf2id.a ( 𝜑𝐴 ⊆ ℝ )
Assertion smf2id ( 𝜑 → ( 𝑥𝐴 ↦ ( 2 · 𝑥 ) ) ∈ ( SMblFn ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 smf2id.j 𝐽 = ( topGen ‘ ran (,) )
2 smf2id.b 𝐵 = ( SalGen ‘ 𝐽 )
3 smf2id.a ( 𝜑𝐴 ⊆ ℝ )
4 nfv 𝑥 𝜑
5 retop ( topGen ‘ ran (,) ) ∈ Top
6 1 5 eqeltri 𝐽 ∈ Top
7 6 a1i ( 𝜑𝐽 ∈ Top )
8 7 2 salgencld ( 𝜑𝐵 ∈ SAlg )
9 reex ℝ ∈ V
10 9 a1i ( 𝜑 → ℝ ∈ V )
11 10 3 ssexd ( 𝜑𝐴 ∈ V )
12 3 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ )
13 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
14 12 13 sseldd ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
15 2re 2 ∈ ℝ
16 15 a1i ( 𝜑 → 2 ∈ ℝ )
17 1 2 3 smfid ( 𝜑 → ( 𝑥𝐴𝑥 ) ∈ ( SMblFn ‘ 𝐵 ) )
18 4 8 11 14 16 17 smfmulc1 ( 𝜑 → ( 𝑥𝐴 ↦ ( 2 · 𝑥 ) ) ∈ ( SMblFn ‘ 𝐵 ) )