| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smf2id.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
smf2id.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
| 3 |
|
smf2id.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 5 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 6 |
1 5
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 8 |
7 2
|
salgencld |
⊢ ( 𝜑 → 𝐵 ∈ SAlg ) |
| 9 |
|
reex |
⊢ ℝ ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 11 |
10 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 14 |
12 13
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 15 |
|
2re |
⊢ 2 ∈ ℝ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 17 |
1 2 3
|
smfid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( SMblFn ‘ 𝐵 ) ) |
| 18 |
4 8 11 14 16 17
|
smfmulc1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 2 · 𝑥 ) ) ∈ ( SMblFn ‘ 𝐵 ) ) |