| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfco.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | smfco.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 3 |  | smfco.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | smfco.b | ⊢ 𝐵  =  ( SalGen ‘ 𝐽 ) | 
						
							| 5 |  | smfco.h | ⊢ ( 𝜑  →  𝐻  ∈  ( SMblFn ‘ 𝐵 ) ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 7 |  | cnvimass | ⊢ ( ◡ 𝐹  “  dom  𝐻 )  ⊆  dom  𝐹 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  dom  𝐻 )  ⊆  dom  𝐹 ) | 
						
							| 9 |  | eqid | ⊢ dom  𝐹  =  dom  𝐹 | 
						
							| 10 | 1 2 9 | smfdmss | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 11 | 8 10 | sstrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  dom  𝐻 )  ⊆  ∪  𝑆 ) | 
						
							| 12 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 13 | 3 12 | eqeltri | ⊢ 𝐽  ∈  Top | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 15 | 14 4 | salgencld | ⊢ ( 𝜑  →  𝐵  ∈  SAlg ) | 
						
							| 16 |  | eqid | ⊢ dom  𝐻  =  dom  𝐻 | 
						
							| 17 | 15 5 16 | smff | ⊢ ( 𝜑  →  𝐻 : dom  𝐻 ⟶ ℝ ) | 
						
							| 18 | 17 | ffund | ⊢ ( 𝜑  →  Fun  𝐻 ) | 
						
							| 19 | 1 2 9 | smff | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 20 | 19 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 21 | 18 20 | funcofd | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 ) : ( ◡ 𝐹  “  dom  𝐻 ) ⟶ ran  𝐻 ) | 
						
							| 22 | 17 | frnd | ⊢ ( 𝜑  →  ran  𝐻  ⊆  ℝ ) | 
						
							| 23 | 21 22 | fssd | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 ) : ( ◡ 𝐹  “  dom  𝐻 ) ⟶ ℝ ) | 
						
							| 24 |  | cnvco | ⊢ ◡ ( 𝐻  ∘  𝐹 )  =  ( ◡ 𝐹  ∘  ◡ 𝐻 ) | 
						
							| 25 | 24 | imaeq1i | ⊢ ( ◡ ( 𝐻  ∘  𝐹 )  “  ( -∞ (,) 𝑎 ) )  =  ( ( ◡ 𝐹  ∘  ◡ 𝐻 )  “  ( -∞ (,) 𝑎 ) ) | 
						
							| 26 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝐻  ∘  𝐹 ) : ( ◡ 𝐹  “  dom  𝐻 ) ⟶ ℝ ) | 
						
							| 27 |  | rexr | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℝ* ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ* ) | 
						
							| 29 | 26 28 | preimaioomnf | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ ( 𝐻  ∘  𝐹 )  “  ( -∞ (,) 𝑎 ) )  =  { 𝑥  ∈  ( ◡ 𝐹  “  dom  𝐻 )  ∣  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 30 |  | imaco | ⊢ ( ( ◡ 𝐹  ∘  ◡ 𝐻 )  “  ( -∞ (,) 𝑎 ) )  =  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ( ◡ 𝐹  ∘  ◡ 𝐻 )  “  ( -∞ (,) 𝑎 ) )  =  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) ) ) | 
						
							| 32 | 25 29 31 | 3eqtr3a | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ( ◡ 𝐹  “  dom  𝐻 )  ∣  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑥 )  <  𝑎 }  =  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) ) ) | 
						
							| 33 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐻 : dom  𝐻 ⟶ ℝ ) | 
						
							| 34 | 33 28 | preimaioomnf | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  { 𝑥  ∈  dom  𝐻  ∣  ( 𝐻 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 35 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐵  ∈  SAlg ) | 
						
							| 36 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐻  ∈  ( SMblFn ‘ 𝐵 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 38 | 35 36 16 37 | smfpreimalt | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐻  ∣  ( 𝐻 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝐵  ↾t  dom  𝐻 ) ) | 
						
							| 39 | 34 38 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝐵  ↾t  dom  𝐻 ) ) | 
						
							| 40 | 15 | elexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 41 | 5 | dmexd | ⊢ ( 𝜑  →  dom  𝐻  ∈  V ) | 
						
							| 42 |  | elrest | ⊢ ( ( 𝐵  ∈  V  ∧  dom  𝐻  ∈  V )  →  ( ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝐵  ↾t  dom  𝐻 )  ↔  ∃ 𝑒  ∈  𝐵 ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) ) ) | 
						
							| 43 | 40 41 42 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝐵  ↾t  dom  𝐻 )  ↔  ∃ 𝑒  ∈  𝐵 ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝐵  ↾t  dom  𝐻 )  ↔  ∃ 𝑒  ∈  𝐵 ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) ) ) | 
						
							| 45 | 39 44 | mpbid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ∃ 𝑒  ∈  𝐵 ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) ) | 
						
							| 46 |  | imaeq2 | ⊢ ( ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  =  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) ) ) | 
						
							| 47 | 46 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵  ∧  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  =  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) ) ) | 
						
							| 48 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( 𝑆  ↾t  dom  𝐹 )  ∈  V ) | 
						
							| 49 | 2 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 50 |  | cnvexg | ⊢ ( 𝐹  ∈  V  →  ◡ 𝐹  ∈  V ) | 
						
							| 51 |  | imaexg | ⊢ ( ◡ 𝐹  ∈  V  →  ( ◡ 𝐹  “  dom  𝐻 )  ∈  V ) | 
						
							| 52 | 49 50 51 | 3syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  dom  𝐻 )  ∈  V ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( ◡ 𝐹  “  dom  𝐻 )  ∈  V ) | 
						
							| 54 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  𝑆  ∈  SAlg ) | 
						
							| 55 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  𝑒  ∈  𝐵 ) | 
						
							| 57 |  | eqid | ⊢ ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  𝑒 ) | 
						
							| 58 | 54 55 9 3 4 56 57 | smfpimbor1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 59 |  | eqid | ⊢ ( ( ◡ 𝐹  “  𝑒 )  ∩  ( ◡ 𝐹  “  dom  𝐻 ) )  =  ( ( ◡ 𝐹  “  𝑒 )  ∩  ( ◡ 𝐹  “  dom  𝐻 ) ) | 
						
							| 60 | 48 53 58 59 | elrestd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( ( ◡ 𝐹  “  𝑒 )  ∩  ( ◡ 𝐹  “  dom  𝐻 ) )  ∈  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 61 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) )  =  ( ( ◡ 𝐹  “  𝑒 )  ∩  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 62 | 20 61 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) )  =  ( ( ◡ 𝐹  “  𝑒 )  ∩  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) )  =  ( ( ◡ 𝐹  “  𝑒 )  ∩  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 64 | 2 | dmexd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 65 |  | restabs | ⊢ ( ( 𝑆  ∈  SAlg  ∧  ( ◡ 𝐹  “  dom  𝐻 )  ⊆  dom  𝐹  ∧  dom  𝐹  ∈  V )  →  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) )  =  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 66 | 1 8 64 65 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) )  =  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( 𝜑  →  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) )  =  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) )  =  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 69 | 60 63 68 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵 )  →  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 70 | 69 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵  ∧  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) )  →  ( ◡ 𝐹  “  ( 𝑒  ∩  dom  𝐻 ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 71 | 47 70 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝐵  ∧  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 ) )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 72 | 71 | 3exp | ⊢ ( 𝜑  →  ( 𝑒  ∈  𝐵  →  ( ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑒  ∈  𝐵  →  ( ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) ) ) | 
						
							| 74 | 73 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∃ 𝑒  ∈  𝐵 ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) )  =  ( 𝑒  ∩  dom  𝐻 )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) ) | 
						
							| 75 | 45 74 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( ◡ 𝐻  “  ( -∞ (,) 𝑎 ) ) )  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 76 | 32 75 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ( ◡ 𝐹  “  dom  𝐻 )  ∣  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( ◡ 𝐹  “  dom  𝐻 ) ) ) | 
						
							| 77 | 6 1 11 23 76 | issmfd | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ∈  ( SMblFn ‘ 𝑆 ) ) |