| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfco.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 2 |  | smfco.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 3 |  | smfco.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 4 |  | smfco.b |  |-  B = ( SalGen ` J ) | 
						
							| 5 |  | smfco.h |  |-  ( ph -> H e. ( SMblFn ` B ) ) | 
						
							| 6 |  | nfv |  |-  F/ a ph | 
						
							| 7 |  | cnvimass |  |-  ( `' F " dom H ) C_ dom F | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( `' F " dom H ) C_ dom F ) | 
						
							| 9 |  | eqid |  |-  dom F = dom F | 
						
							| 10 | 1 2 9 | smfdmss |  |-  ( ph -> dom F C_ U. S ) | 
						
							| 11 | 8 10 | sstrd |  |-  ( ph -> ( `' F " dom H ) C_ U. S ) | 
						
							| 12 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 13 | 3 12 | eqeltri |  |-  J e. Top | 
						
							| 14 | 13 | a1i |  |-  ( ph -> J e. Top ) | 
						
							| 15 | 14 4 | salgencld |  |-  ( ph -> B e. SAlg ) | 
						
							| 16 |  | eqid |  |-  dom H = dom H | 
						
							| 17 | 15 5 16 | smff |  |-  ( ph -> H : dom H --> RR ) | 
						
							| 18 | 17 | ffund |  |-  ( ph -> Fun H ) | 
						
							| 19 | 1 2 9 | smff |  |-  ( ph -> F : dom F --> RR ) | 
						
							| 20 | 19 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 21 | 18 20 | funcofd |  |-  ( ph -> ( H o. F ) : ( `' F " dom H ) --> ran H ) | 
						
							| 22 | 17 | frnd |  |-  ( ph -> ran H C_ RR ) | 
						
							| 23 | 21 22 | fssd |  |-  ( ph -> ( H o. F ) : ( `' F " dom H ) --> RR ) | 
						
							| 24 |  | cnvco |  |-  `' ( H o. F ) = ( `' F o. `' H ) | 
						
							| 25 | 24 | imaeq1i |  |-  ( `' ( H o. F ) " ( -oo (,) a ) ) = ( ( `' F o. `' H ) " ( -oo (,) a ) ) | 
						
							| 26 | 23 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( H o. F ) : ( `' F " dom H ) --> RR ) | 
						
							| 27 |  | rexr |  |-  ( a e. RR -> a e. RR* ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ a e. RR ) -> a e. RR* ) | 
						
							| 29 | 26 28 | preimaioomnf |  |-  ( ( ph /\ a e. RR ) -> ( `' ( H o. F ) " ( -oo (,) a ) ) = { x e. ( `' F " dom H ) | ( ( H o. F ) ` x ) < a } ) | 
						
							| 30 |  | imaco |  |-  ( ( `' F o. `' H ) " ( -oo (,) a ) ) = ( `' F " ( `' H " ( -oo (,) a ) ) ) | 
						
							| 31 | 30 | a1i |  |-  ( ( ph /\ a e. RR ) -> ( ( `' F o. `' H ) " ( -oo (,) a ) ) = ( `' F " ( `' H " ( -oo (,) a ) ) ) ) | 
						
							| 32 | 25 29 31 | 3eqtr3a |  |-  ( ( ph /\ a e. RR ) -> { x e. ( `' F " dom H ) | ( ( H o. F ) ` x ) < a } = ( `' F " ( `' H " ( -oo (,) a ) ) ) ) | 
						
							| 33 | 17 | adantr |  |-  ( ( ph /\ a e. RR ) -> H : dom H --> RR ) | 
						
							| 34 | 33 28 | preimaioomnf |  |-  ( ( ph /\ a e. RR ) -> ( `' H " ( -oo (,) a ) ) = { x e. dom H | ( H ` x ) < a } ) | 
						
							| 35 | 15 | adantr |  |-  ( ( ph /\ a e. RR ) -> B e. SAlg ) | 
						
							| 36 | 5 | adantr |  |-  ( ( ph /\ a e. RR ) -> H e. ( SMblFn ` B ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ a e. RR ) -> a e. RR ) | 
						
							| 38 | 35 36 16 37 | smfpreimalt |  |-  ( ( ph /\ a e. RR ) -> { x e. dom H | ( H ` x ) < a } e. ( B |`t dom H ) ) | 
						
							| 39 | 34 38 | eqeltrd |  |-  ( ( ph /\ a e. RR ) -> ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) ) | 
						
							| 40 | 15 | elexd |  |-  ( ph -> B e. _V ) | 
						
							| 41 | 5 | dmexd |  |-  ( ph -> dom H e. _V ) | 
						
							| 42 |  | elrest |  |-  ( ( B e. _V /\ dom H e. _V ) -> ( ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) <-> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) ) | 
						
							| 43 | 40 41 42 | syl2anc |  |-  ( ph -> ( ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) <-> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) <-> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) ) | 
						
							| 45 | 39 44 | mpbid |  |-  ( ( ph /\ a e. RR ) -> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) | 
						
							| 46 |  | imaeq2 |  |-  ( ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) = ( `' F " ( e i^i dom H ) ) ) | 
						
							| 47 | 46 | 3ad2ant3 |  |-  ( ( ph /\ e e. B /\ ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) = ( `' F " ( e i^i dom H ) ) ) | 
						
							| 48 |  | ovexd |  |-  ( ( ph /\ e e. B ) -> ( S |`t dom F ) e. _V ) | 
						
							| 49 | 2 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 50 |  | cnvexg |  |-  ( F e. _V -> `' F e. _V ) | 
						
							| 51 |  | imaexg |  |-  ( `' F e. _V -> ( `' F " dom H ) e. _V ) | 
						
							| 52 | 49 50 51 | 3syl |  |-  ( ph -> ( `' F " dom H ) e. _V ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ e e. B ) -> ( `' F " dom H ) e. _V ) | 
						
							| 54 | 1 | adantr |  |-  ( ( ph /\ e e. B ) -> S e. SAlg ) | 
						
							| 55 | 2 | adantr |  |-  ( ( ph /\ e e. B ) -> F e. ( SMblFn ` S ) ) | 
						
							| 56 |  | simpr |  |-  ( ( ph /\ e e. B ) -> e e. B ) | 
						
							| 57 |  | eqid |  |-  ( `' F " e ) = ( `' F " e ) | 
						
							| 58 | 54 55 9 3 4 56 57 | smfpimbor1 |  |-  ( ( ph /\ e e. B ) -> ( `' F " e ) e. ( S |`t dom F ) ) | 
						
							| 59 |  | eqid |  |-  ( ( `' F " e ) i^i ( `' F " dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) | 
						
							| 60 | 48 53 58 59 | elrestd |  |-  ( ( ph /\ e e. B ) -> ( ( `' F " e ) i^i ( `' F " dom H ) ) e. ( ( S |`t dom F ) |`t ( `' F " dom H ) ) ) | 
						
							| 61 |  | inpreima |  |-  ( Fun F -> ( `' F " ( e i^i dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) ) | 
						
							| 62 | 20 61 | syl |  |-  ( ph -> ( `' F " ( e i^i dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ph /\ e e. B ) -> ( `' F " ( e i^i dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) ) | 
						
							| 64 | 2 | dmexd |  |-  ( ph -> dom F e. _V ) | 
						
							| 65 |  | restabs |  |-  ( ( S e. SAlg /\ ( `' F " dom H ) C_ dom F /\ dom F e. _V ) -> ( ( S |`t dom F ) |`t ( `' F " dom H ) ) = ( S |`t ( `' F " dom H ) ) ) | 
						
							| 66 | 1 8 64 65 | syl3anc |  |-  ( ph -> ( ( S |`t dom F ) |`t ( `' F " dom H ) ) = ( S |`t ( `' F " dom H ) ) ) | 
						
							| 67 | 66 | eqcomd |  |-  ( ph -> ( S |`t ( `' F " dom H ) ) = ( ( S |`t dom F ) |`t ( `' F " dom H ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ e e. B ) -> ( S |`t ( `' F " dom H ) ) = ( ( S |`t dom F ) |`t ( `' F " dom H ) ) ) | 
						
							| 69 | 60 63 68 | 3eltr4d |  |-  ( ( ph /\ e e. B ) -> ( `' F " ( e i^i dom H ) ) e. ( S |`t ( `' F " dom H ) ) ) | 
						
							| 70 | 69 | 3adant3 |  |-  ( ( ph /\ e e. B /\ ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) -> ( `' F " ( e i^i dom H ) ) e. ( S |`t ( `' F " dom H ) ) ) | 
						
							| 71 | 47 70 | eqeltrd |  |-  ( ( ph /\ e e. B /\ ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) | 
						
							| 72 | 71 | 3exp |  |-  ( ph -> ( e e. B -> ( ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( e e. B -> ( ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) ) ) | 
						
							| 74 | 73 | rexlimdv |  |-  ( ( ph /\ a e. RR ) -> ( E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) ) | 
						
							| 75 | 45 74 | mpd |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) | 
						
							| 76 | 32 75 | eqeltrd |  |-  ( ( ph /\ a e. RR ) -> { x e. ( `' F " dom H ) | ( ( H o. F ) ` x ) < a } e. ( S |`t ( `' F " dom H ) ) ) | 
						
							| 77 | 6 1 11 23 76 | issmfd |  |-  ( ph -> ( H o. F ) e. ( SMblFn ` S ) ) |