| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfco.s |
|- ( ph -> S e. SAlg ) |
| 2 |
|
smfco.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 3 |
|
smfco.j |
|- J = ( topGen ` ran (,) ) |
| 4 |
|
smfco.b |
|- B = ( SalGen ` J ) |
| 5 |
|
smfco.h |
|- ( ph -> H e. ( SMblFn ` B ) ) |
| 6 |
|
nfv |
|- F/ a ph |
| 7 |
|
cnvimass |
|- ( `' F " dom H ) C_ dom F |
| 8 |
7
|
a1i |
|- ( ph -> ( `' F " dom H ) C_ dom F ) |
| 9 |
|
eqid |
|- dom F = dom F |
| 10 |
1 2 9
|
smfdmss |
|- ( ph -> dom F C_ U. S ) |
| 11 |
8 10
|
sstrd |
|- ( ph -> ( `' F " dom H ) C_ U. S ) |
| 12 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 13 |
3 12
|
eqeltri |
|- J e. Top |
| 14 |
13
|
a1i |
|- ( ph -> J e. Top ) |
| 15 |
14 4
|
salgencld |
|- ( ph -> B e. SAlg ) |
| 16 |
|
eqid |
|- dom H = dom H |
| 17 |
15 5 16
|
smff |
|- ( ph -> H : dom H --> RR ) |
| 18 |
17
|
ffund |
|- ( ph -> Fun H ) |
| 19 |
1 2 9
|
smff |
|- ( ph -> F : dom F --> RR ) |
| 20 |
19
|
ffund |
|- ( ph -> Fun F ) |
| 21 |
18 20
|
funcofd |
|- ( ph -> ( H o. F ) : ( `' F " dom H ) --> ran H ) |
| 22 |
17
|
frnd |
|- ( ph -> ran H C_ RR ) |
| 23 |
21 22
|
fssd |
|- ( ph -> ( H o. F ) : ( `' F " dom H ) --> RR ) |
| 24 |
|
cnvco |
|- `' ( H o. F ) = ( `' F o. `' H ) |
| 25 |
24
|
imaeq1i |
|- ( `' ( H o. F ) " ( -oo (,) a ) ) = ( ( `' F o. `' H ) " ( -oo (,) a ) ) |
| 26 |
23
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( H o. F ) : ( `' F " dom H ) --> RR ) |
| 27 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
| 29 |
26 28
|
preimaioomnf |
|- ( ( ph /\ a e. RR ) -> ( `' ( H o. F ) " ( -oo (,) a ) ) = { x e. ( `' F " dom H ) | ( ( H o. F ) ` x ) < a } ) |
| 30 |
|
imaco |
|- ( ( `' F o. `' H ) " ( -oo (,) a ) ) = ( `' F " ( `' H " ( -oo (,) a ) ) ) |
| 31 |
30
|
a1i |
|- ( ( ph /\ a e. RR ) -> ( ( `' F o. `' H ) " ( -oo (,) a ) ) = ( `' F " ( `' H " ( -oo (,) a ) ) ) ) |
| 32 |
25 29 31
|
3eqtr3a |
|- ( ( ph /\ a e. RR ) -> { x e. ( `' F " dom H ) | ( ( H o. F ) ` x ) < a } = ( `' F " ( `' H " ( -oo (,) a ) ) ) ) |
| 33 |
17
|
adantr |
|- ( ( ph /\ a e. RR ) -> H : dom H --> RR ) |
| 34 |
33 28
|
preimaioomnf |
|- ( ( ph /\ a e. RR ) -> ( `' H " ( -oo (,) a ) ) = { x e. dom H | ( H ` x ) < a } ) |
| 35 |
15
|
adantr |
|- ( ( ph /\ a e. RR ) -> B e. SAlg ) |
| 36 |
5
|
adantr |
|- ( ( ph /\ a e. RR ) -> H e. ( SMblFn ` B ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 38 |
35 36 16 37
|
smfpreimalt |
|- ( ( ph /\ a e. RR ) -> { x e. dom H | ( H ` x ) < a } e. ( B |`t dom H ) ) |
| 39 |
34 38
|
eqeltrd |
|- ( ( ph /\ a e. RR ) -> ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) ) |
| 40 |
15
|
elexd |
|- ( ph -> B e. _V ) |
| 41 |
5
|
dmexd |
|- ( ph -> dom H e. _V ) |
| 42 |
|
elrest |
|- ( ( B e. _V /\ dom H e. _V ) -> ( ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) <-> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) ) |
| 43 |
40 41 42
|
syl2anc |
|- ( ph -> ( ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) <-> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( ( `' H " ( -oo (,) a ) ) e. ( B |`t dom H ) <-> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) ) |
| 45 |
39 44
|
mpbid |
|- ( ( ph /\ a e. RR ) -> E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) |
| 46 |
|
imaeq2 |
|- ( ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) = ( `' F " ( e i^i dom H ) ) ) |
| 47 |
46
|
3ad2ant3 |
|- ( ( ph /\ e e. B /\ ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) = ( `' F " ( e i^i dom H ) ) ) |
| 48 |
|
ovexd |
|- ( ( ph /\ e e. B ) -> ( S |`t dom F ) e. _V ) |
| 49 |
2
|
elexd |
|- ( ph -> F e. _V ) |
| 50 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
| 51 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " dom H ) e. _V ) |
| 52 |
49 50 51
|
3syl |
|- ( ph -> ( `' F " dom H ) e. _V ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ e e. B ) -> ( `' F " dom H ) e. _V ) |
| 54 |
1
|
adantr |
|- ( ( ph /\ e e. B ) -> S e. SAlg ) |
| 55 |
2
|
adantr |
|- ( ( ph /\ e e. B ) -> F e. ( SMblFn ` S ) ) |
| 56 |
|
simpr |
|- ( ( ph /\ e e. B ) -> e e. B ) |
| 57 |
|
eqid |
|- ( `' F " e ) = ( `' F " e ) |
| 58 |
54 55 9 3 4 56 57
|
smfpimbor1 |
|- ( ( ph /\ e e. B ) -> ( `' F " e ) e. ( S |`t dom F ) ) |
| 59 |
|
eqid |
|- ( ( `' F " e ) i^i ( `' F " dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) |
| 60 |
48 53 58 59
|
elrestd |
|- ( ( ph /\ e e. B ) -> ( ( `' F " e ) i^i ( `' F " dom H ) ) e. ( ( S |`t dom F ) |`t ( `' F " dom H ) ) ) |
| 61 |
|
inpreima |
|- ( Fun F -> ( `' F " ( e i^i dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) ) |
| 62 |
20 61
|
syl |
|- ( ph -> ( `' F " ( e i^i dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ e e. B ) -> ( `' F " ( e i^i dom H ) ) = ( ( `' F " e ) i^i ( `' F " dom H ) ) ) |
| 64 |
2
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 65 |
|
restabs |
|- ( ( S e. SAlg /\ ( `' F " dom H ) C_ dom F /\ dom F e. _V ) -> ( ( S |`t dom F ) |`t ( `' F " dom H ) ) = ( S |`t ( `' F " dom H ) ) ) |
| 66 |
1 8 64 65
|
syl3anc |
|- ( ph -> ( ( S |`t dom F ) |`t ( `' F " dom H ) ) = ( S |`t ( `' F " dom H ) ) ) |
| 67 |
66
|
eqcomd |
|- ( ph -> ( S |`t ( `' F " dom H ) ) = ( ( S |`t dom F ) |`t ( `' F " dom H ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ e e. B ) -> ( S |`t ( `' F " dom H ) ) = ( ( S |`t dom F ) |`t ( `' F " dom H ) ) ) |
| 69 |
60 63 68
|
3eltr4d |
|- ( ( ph /\ e e. B ) -> ( `' F " ( e i^i dom H ) ) e. ( S |`t ( `' F " dom H ) ) ) |
| 70 |
69
|
3adant3 |
|- ( ( ph /\ e e. B /\ ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) -> ( `' F " ( e i^i dom H ) ) e. ( S |`t ( `' F " dom H ) ) ) |
| 71 |
47 70
|
eqeltrd |
|- ( ( ph /\ e e. B /\ ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) |
| 72 |
71
|
3exp |
|- ( ph -> ( e e. B -> ( ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( e e. B -> ( ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) ) ) |
| 74 |
73
|
rexlimdv |
|- ( ( ph /\ a e. RR ) -> ( E. e e. B ( `' H " ( -oo (,) a ) ) = ( e i^i dom H ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) ) |
| 75 |
45 74
|
mpd |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( `' H " ( -oo (,) a ) ) ) e. ( S |`t ( `' F " dom H ) ) ) |
| 76 |
32 75
|
eqeltrd |
|- ( ( ph /\ a e. RR ) -> { x e. ( `' F " dom H ) | ( ( H o. F ) ` x ) < a } e. ( S |`t ( `' F " dom H ) ) ) |
| 77 |
6 1 11 23 76
|
issmfd |
|- ( ph -> ( H o. F ) e. ( SMblFn ` S ) ) |