Metamath Proof Explorer


Theorem smfneg

Description: The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfneg.x
|- F/ x ph
smfneg.s
|- ( ph -> S e. SAlg )
smfneg.a
|- ( ph -> A e. V )
smfneg.b
|- ( ( ph /\ x e. A ) -> B e. RR )
smfneg.m
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
Assertion smfneg
|- ( ph -> ( x e. A |-> -u B ) e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 smfneg.x
 |-  F/ x ph
2 smfneg.s
 |-  ( ph -> S e. SAlg )
3 smfneg.a
 |-  ( ph -> A e. V )
4 smfneg.b
 |-  ( ( ph /\ x e. A ) -> B e. RR )
5 smfneg.m
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
6 4 recnd
 |-  ( ( ph /\ x e. A ) -> B e. CC )
7 6 mulm1d
 |-  ( ( ph /\ x e. A ) -> ( -u 1 x. B ) = -u B )
8 7 eqcomd
 |-  ( ( ph /\ x e. A ) -> -u B = ( -u 1 x. B ) )
9 1 8 mpteq2da
 |-  ( ph -> ( x e. A |-> -u B ) = ( x e. A |-> ( -u 1 x. B ) ) )
10 neg1rr
 |-  -u 1 e. RR
11 10 a1i
 |-  ( ph -> -u 1 e. RR )
12 1 2 3 4 11 5 smfmulc1
 |-  ( ph -> ( x e. A |-> ( -u 1 x. B ) ) e. ( SMblFn ` S ) )
13 9 12 eqeltrd
 |-  ( ph -> ( x e. A |-> -u B ) e. ( SMblFn ` S ) )