Step |
Hyp |
Ref |
Expression |
1 |
|
smfneg.x |
|- F/ x ph |
2 |
|
smfneg.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfneg.a |
|- ( ph -> A e. V ) |
4 |
|
smfneg.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
5 |
|
smfneg.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
6 |
4
|
recnd |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
7 |
6
|
mulm1d |
|- ( ( ph /\ x e. A ) -> ( -u 1 x. B ) = -u B ) |
8 |
7
|
eqcomd |
|- ( ( ph /\ x e. A ) -> -u B = ( -u 1 x. B ) ) |
9 |
1 8
|
mpteq2da |
|- ( ph -> ( x e. A |-> -u B ) = ( x e. A |-> ( -u 1 x. B ) ) ) |
10 |
|
neg1rr |
|- -u 1 e. RR |
11 |
10
|
a1i |
|- ( ph -> -u 1 e. RR ) |
12 |
1 2 3 4 11 5
|
smfmulc1 |
|- ( ph -> ( x e. A |-> ( -u 1 x. B ) ) e. ( SMblFn ` S ) ) |
13 |
9 12
|
eqeltrd |
|- ( ph -> ( x e. A |-> -u B ) e. ( SMblFn ` S ) ) |