| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfneg.x |  |-  F/ x ph | 
						
							| 2 |  | smfneg.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfneg.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | smfneg.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 5 |  | smfneg.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 6 | 4 | recnd |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 7 | 6 | mulm1d |  |-  ( ( ph /\ x e. A ) -> ( -u 1 x. B ) = -u B ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( ph /\ x e. A ) -> -u B = ( -u 1 x. B ) ) | 
						
							| 9 | 1 8 | mpteq2da |  |-  ( ph -> ( x e. A |-> -u B ) = ( x e. A |-> ( -u 1 x. B ) ) ) | 
						
							| 10 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( ph -> -u 1 e. RR ) | 
						
							| 12 | 1 2 3 4 11 5 | smfmulc1 |  |-  ( ph -> ( x e. A |-> ( -u 1 x. B ) ) e. ( SMblFn ` S ) ) | 
						
							| 13 | 9 12 | eqeltrd |  |-  ( ph -> ( x e. A |-> -u B ) e. ( SMblFn ` S ) ) |