Step |
Hyp |
Ref |
Expression |
1 |
|
smfmulc1.x |
|- F/ x ph |
2 |
|
smfmulc1.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfmulc1.a |
|- ( ph -> A e. V ) |
4 |
|
smfmulc1.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
5 |
|
smfmulc1.c |
|- ( ph -> C e. RR ) |
6 |
|
smfmulc1.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
7 |
|
inidm |
|- ( A i^i A ) = A |
8 |
7
|
eqcomi |
|- A = ( A i^i A ) |
9 |
8
|
mpteq1i |
|- ( x e. A |-> ( C x. B ) ) = ( x e. ( A i^i A ) |-> ( C x. B ) ) |
10 |
9
|
a1i |
|- ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. ( A i^i A ) |-> ( C x. B ) ) ) |
11 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
12 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
13 |
1 12 4
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
14 |
13
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
15 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
16 |
2 6 15
|
smfdmss |
|- ( ph -> dom ( x e. A |-> B ) C_ U. S ) |
17 |
14 16
|
eqsstrd |
|- ( ph -> A C_ U. S ) |
18 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
19 |
1 2 17 5 18
|
smfconst |
|- ( ph -> ( x e. A |-> C ) e. ( SMblFn ` S ) ) |
20 |
1 2 3 11 4 19 6
|
smfmul |
|- ( ph -> ( x e. ( A i^i A ) |-> ( C x. B ) ) e. ( SMblFn ` S ) ) |
21 |
10 20
|
eqeltrd |
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. ( SMblFn ` S ) ) |