Metamath Proof Explorer


Theorem smfmulc1

Description: A sigma-measurable function multiplied by a constant is sigma-measurable. Proposition 121E (c) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmulc1.x
|- F/ x ph
smfmulc1.s
|- ( ph -> S e. SAlg )
smfmulc1.a
|- ( ph -> A e. V )
smfmulc1.b
|- ( ( ph /\ x e. A ) -> B e. RR )
smfmulc1.c
|- ( ph -> C e. RR )
smfmulc1.m
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
Assertion smfmulc1
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 smfmulc1.x
 |-  F/ x ph
2 smfmulc1.s
 |-  ( ph -> S e. SAlg )
3 smfmulc1.a
 |-  ( ph -> A e. V )
4 smfmulc1.b
 |-  ( ( ph /\ x e. A ) -> B e. RR )
5 smfmulc1.c
 |-  ( ph -> C e. RR )
6 smfmulc1.m
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
7 inidm
 |-  ( A i^i A ) = A
8 7 eqcomi
 |-  A = ( A i^i A )
9 8 mpteq1i
 |-  ( x e. A |-> ( C x. B ) ) = ( x e. ( A i^i A ) |-> ( C x. B ) )
10 9 a1i
 |-  ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. ( A i^i A ) |-> ( C x. B ) ) )
11 5 adantr
 |-  ( ( ph /\ x e. A ) -> C e. RR )
12 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
13 1 12 4 dmmptdf
 |-  ( ph -> dom ( x e. A |-> B ) = A )
14 13 eqcomd
 |-  ( ph -> A = dom ( x e. A |-> B ) )
15 eqid
 |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B )
16 2 6 15 smfdmss
 |-  ( ph -> dom ( x e. A |-> B ) C_ U. S )
17 14 16 eqsstrd
 |-  ( ph -> A C_ U. S )
18 eqid
 |-  ( x e. A |-> C ) = ( x e. A |-> C )
19 1 2 17 5 18 smfconst
 |-  ( ph -> ( x e. A |-> C ) e. ( SMblFn ` S ) )
20 1 2 3 11 4 19 6 smfmul
 |-  ( ph -> ( x e. ( A i^i A ) |-> ( C x. B ) ) e. ( SMblFn ` S ) )
21 10 20 eqeltrd
 |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. ( SMblFn ` S ) )