| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfmulc1.x |  |-  F/ x ph | 
						
							| 2 |  | smfmulc1.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfmulc1.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | smfmulc1.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 5 |  | smfmulc1.c |  |-  ( ph -> C e. RR ) | 
						
							| 6 |  | smfmulc1.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 7 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 8 | 7 | eqcomi |  |-  A = ( A i^i A ) | 
						
							| 9 | 8 | mpteq1i |  |-  ( x e. A |-> ( C x. B ) ) = ( x e. ( A i^i A ) |-> ( C x. B ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. ( A i^i A ) |-> ( C x. B ) ) ) | 
						
							| 11 | 5 | adantr |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 12 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 13 | 1 12 4 | dmmptdf |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 15 |  | eqid |  |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B ) | 
						
							| 16 | 2 6 15 | smfdmss |  |-  ( ph -> dom ( x e. A |-> B ) C_ U. S ) | 
						
							| 17 | 14 16 | eqsstrd |  |-  ( ph -> A C_ U. S ) | 
						
							| 18 |  | eqid |  |-  ( x e. A |-> C ) = ( x e. A |-> C ) | 
						
							| 19 | 1 2 17 5 18 | smfconst |  |-  ( ph -> ( x e. A |-> C ) e. ( SMblFn ` S ) ) | 
						
							| 20 | 1 2 3 11 4 19 6 | smfmul |  |-  ( ph -> ( x e. ( A i^i A ) |-> ( C x. B ) ) e. ( SMblFn ` S ) ) | 
						
							| 21 | 10 20 | eqeltrd |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. ( SMblFn ` S ) ) |