| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfdiv.x |  |-  F/ x ph | 
						
							| 2 |  | smfdiv.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfdiv.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | smfdiv.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 5 |  | smfdiv.c |  |-  ( ph -> C e. W ) | 
						
							| 6 |  | smfdiv.d |  |-  ( ( ph /\ x e. C ) -> D e. RR ) | 
						
							| 7 |  | smfdiv.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 8 |  | smfdiv.n |  |-  ( ph -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) | 
						
							| 9 |  | smfdiv.e |  |-  E = { x e. C | D =/= 0 } | 
						
							| 10 |  | elinel1 |  |-  ( x e. ( A i^i E ) -> x e. A ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> x e. A ) | 
						
							| 12 | 11 4 | syldan |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> B e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> B e. CC ) | 
						
							| 14 |  | ssrab2 |  |-  { x e. C | D =/= 0 } C_ C | 
						
							| 15 | 9 14 | eqsstri |  |-  E C_ C | 
						
							| 16 |  | elinel2 |  |-  ( x e. ( A i^i E ) -> x e. E ) | 
						
							| 17 | 15 16 | sselid |  |-  ( x e. ( A i^i E ) -> x e. C ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> x e. C ) | 
						
							| 19 | 18 6 | syldan |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> D e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> D e. CC ) | 
						
							| 21 | 9 | eleq2i |  |-  ( x e. E <-> x e. { x e. C | D =/= 0 } ) | 
						
							| 22 | 21 | biimpi |  |-  ( x e. E -> x e. { x e. C | D =/= 0 } ) | 
						
							| 23 |  | rabidim2 |  |-  ( x e. { x e. C | D =/= 0 } -> D =/= 0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( x e. E -> D =/= 0 ) | 
						
							| 25 | 16 24 | syl |  |-  ( x e. ( A i^i E ) -> D =/= 0 ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> D =/= 0 ) | 
						
							| 27 | 13 20 26 | divrecd |  |-  ( ( ph /\ x e. ( A i^i E ) ) -> ( B / D ) = ( B x. ( 1 / D ) ) ) | 
						
							| 28 | 1 27 | mpteq2da |  |-  ( ph -> ( x e. ( A i^i E ) |-> ( B / D ) ) = ( x e. ( A i^i E ) |-> ( B x. ( 1 / D ) ) ) ) | 
						
							| 29 |  | 1red |  |-  ( ( ph /\ x e. E ) -> 1 e. RR ) | 
						
							| 30 | 15 | sseli |  |-  ( x e. E -> x e. C ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ x e. E ) -> x e. C ) | 
						
							| 32 | 31 6 | syldan |  |-  ( ( ph /\ x e. E ) -> D e. RR ) | 
						
							| 33 | 24 | adantl |  |-  ( ( ph /\ x e. E ) -> D =/= 0 ) | 
						
							| 34 | 29 32 33 | redivcld |  |-  ( ( ph /\ x e. E ) -> ( 1 / D ) e. RR ) | 
						
							| 35 | 1 2 5 6 8 9 | smfrec |  |-  ( ph -> ( x e. E |-> ( 1 / D ) ) e. ( SMblFn ` S ) ) | 
						
							| 36 | 1 2 3 4 34 7 35 | smfmul |  |-  ( ph -> ( x e. ( A i^i E ) |-> ( B x. ( 1 / D ) ) ) e. ( SMblFn ` S ) ) | 
						
							| 37 | 28 36 | eqeltrd |  |-  ( ph -> ( x e. ( A i^i E ) |-> ( B / D ) ) e. ( SMblFn ` S ) ) |