| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfdiv.x |
|- F/ x ph |
| 2 |
|
smfdiv.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfdiv.a |
|- ( ph -> A e. V ) |
| 4 |
|
smfdiv.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 5 |
|
smfdiv.c |
|- ( ph -> C e. W ) |
| 6 |
|
smfdiv.d |
|- ( ( ph /\ x e. C ) -> D e. RR ) |
| 7 |
|
smfdiv.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 8 |
|
smfdiv.n |
|- ( ph -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) |
| 9 |
|
smfdiv.e |
|- E = { x e. C | D =/= 0 } |
| 10 |
|
elinel1 |
|- ( x e. ( A i^i E ) -> x e. A ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ x e. ( A i^i E ) ) -> x e. A ) |
| 12 |
11 4
|
syldan |
|- ( ( ph /\ x e. ( A i^i E ) ) -> B e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ph /\ x e. ( A i^i E ) ) -> B e. CC ) |
| 14 |
|
ssrab2 |
|- { x e. C | D =/= 0 } C_ C |
| 15 |
9 14
|
eqsstri |
|- E C_ C |
| 16 |
|
elinel2 |
|- ( x e. ( A i^i E ) -> x e. E ) |
| 17 |
15 16
|
sselid |
|- ( x e. ( A i^i E ) -> x e. C ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ x e. ( A i^i E ) ) -> x e. C ) |
| 19 |
18 6
|
syldan |
|- ( ( ph /\ x e. ( A i^i E ) ) -> D e. RR ) |
| 20 |
19
|
recnd |
|- ( ( ph /\ x e. ( A i^i E ) ) -> D e. CC ) |
| 21 |
9
|
eleq2i |
|- ( x e. E <-> x e. { x e. C | D =/= 0 } ) |
| 22 |
21
|
biimpi |
|- ( x e. E -> x e. { x e. C | D =/= 0 } ) |
| 23 |
|
rabidim2 |
|- ( x e. { x e. C | D =/= 0 } -> D =/= 0 ) |
| 24 |
22 23
|
syl |
|- ( x e. E -> D =/= 0 ) |
| 25 |
16 24
|
syl |
|- ( x e. ( A i^i E ) -> D =/= 0 ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ x e. ( A i^i E ) ) -> D =/= 0 ) |
| 27 |
13 20 26
|
divrecd |
|- ( ( ph /\ x e. ( A i^i E ) ) -> ( B / D ) = ( B x. ( 1 / D ) ) ) |
| 28 |
1 27
|
mpteq2da |
|- ( ph -> ( x e. ( A i^i E ) |-> ( B / D ) ) = ( x e. ( A i^i E ) |-> ( B x. ( 1 / D ) ) ) ) |
| 29 |
|
1red |
|- ( ( ph /\ x e. E ) -> 1 e. RR ) |
| 30 |
15
|
sseli |
|- ( x e. E -> x e. C ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ x e. E ) -> x e. C ) |
| 32 |
31 6
|
syldan |
|- ( ( ph /\ x e. E ) -> D e. RR ) |
| 33 |
24
|
adantl |
|- ( ( ph /\ x e. E ) -> D =/= 0 ) |
| 34 |
29 32 33
|
redivcld |
|- ( ( ph /\ x e. E ) -> ( 1 / D ) e. RR ) |
| 35 |
1 2 5 6 8 9
|
smfrec |
|- ( ph -> ( x e. E |-> ( 1 / D ) ) e. ( SMblFn ` S ) ) |
| 36 |
1 2 3 4 34 7 35
|
smfmul |
|- ( ph -> ( x e. ( A i^i E ) |-> ( B x. ( 1 / D ) ) ) e. ( SMblFn ` S ) ) |
| 37 |
28 36
|
eqeltrd |
|- ( ph -> ( x e. ( A i^i E ) |-> ( B / D ) ) e. ( SMblFn ` S ) ) |