| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfdiv.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfdiv.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfdiv.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | smfdiv.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | smfdiv.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑊 ) | 
						
							| 6 |  | smfdiv.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐷  ∈  ℝ ) | 
						
							| 7 |  | smfdiv.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 8 |  | smfdiv.n | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  𝐷 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 9 |  | smfdiv.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐶  ∣  𝐷  ≠  0 } | 
						
							| 10 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  →  𝑥  ∈  𝐴 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 12 | 11 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 14 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐶  ∣  𝐷  ≠  0 }  ⊆  𝐶 | 
						
							| 15 | 9 14 | eqsstri | ⊢ 𝐸  ⊆  𝐶 | 
						
							| 16 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  →  𝑥  ∈  𝐸 ) | 
						
							| 17 | 15 16 | sselid | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  →  𝑥  ∈  𝐶 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 19 | 18 6 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 21 | 9 | eleq2i | ⊢ ( 𝑥  ∈  𝐸  ↔  𝑥  ∈  { 𝑥  ∈  𝐶  ∣  𝐷  ≠  0 } ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑥  ∈  𝐸  →  𝑥  ∈  { 𝑥  ∈  𝐶  ∣  𝐷  ≠  0 } ) | 
						
							| 23 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐶  ∣  𝐷  ≠  0 }  →  𝐷  ≠  0 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑥  ∈  𝐸  →  𝐷  ≠  0 ) | 
						
							| 25 | 16 24 | syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  →  𝐷  ≠  0 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  𝐷  ≠  0 ) | 
						
							| 27 | 13 20 26 | divrecd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐸 ) )  →  ( 𝐵  /  𝐷 )  =  ( 𝐵  ·  ( 1  /  𝐷 ) ) ) | 
						
							| 28 | 1 27 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  ↦  ( 𝐵  /  𝐷 ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  ↦  ( 𝐵  ·  ( 1  /  𝐷 ) ) ) ) | 
						
							| 29 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐸 )  →  1  ∈  ℝ ) | 
						
							| 30 | 15 | sseli | ⊢ ( 𝑥  ∈  𝐸  →  𝑥  ∈  𝐶 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐸 )  →  𝑥  ∈  𝐶 ) | 
						
							| 32 | 31 6 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐸 )  →  𝐷  ∈  ℝ ) | 
						
							| 33 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐸 )  →  𝐷  ≠  0 ) | 
						
							| 34 | 29 32 33 | redivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐸 )  →  ( 1  /  𝐷 )  ∈  ℝ ) | 
						
							| 35 | 1 2 5 6 8 9 | smfrec | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐸  ↦  ( 1  /  𝐷 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 36 | 1 2 3 4 34 7 35 | smfmul | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  ↦  ( 𝐵  ·  ( 1  /  𝐷 ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 37 | 28 36 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐸 )  ↦  ( 𝐵  /  𝐷 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) |