| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfdiv.x |
|
| 2 |
|
smfdiv.s |
|
| 3 |
|
smfdiv.a |
|
| 4 |
|
smfdiv.b |
|
| 5 |
|
smfdiv.c |
|
| 6 |
|
smfdiv.d |
|
| 7 |
|
smfdiv.m |
|
| 8 |
|
smfdiv.n |
|
| 9 |
|
smfdiv.e |
|
| 10 |
|
elinel1 |
|
| 11 |
10
|
adantl |
|
| 12 |
11 4
|
syldan |
|
| 13 |
12
|
recnd |
|
| 14 |
|
ssrab2 |
|
| 15 |
9 14
|
eqsstri |
|
| 16 |
|
elinel2 |
|
| 17 |
15 16
|
sselid |
|
| 18 |
17
|
adantl |
|
| 19 |
18 6
|
syldan |
|
| 20 |
19
|
recnd |
|
| 21 |
9
|
eleq2i |
|
| 22 |
21
|
biimpi |
|
| 23 |
|
rabidim2 |
|
| 24 |
22 23
|
syl |
|
| 25 |
16 24
|
syl |
|
| 26 |
25
|
adantl |
|
| 27 |
13 20 26
|
divrecd |
|
| 28 |
1 27
|
mpteq2da |
|
| 29 |
|
1red |
|
| 30 |
15
|
sseli |
|
| 31 |
30
|
adantl |
|
| 32 |
31 6
|
syldan |
|
| 33 |
24
|
adantl |
|
| 34 |
29 32 33
|
redivcld |
|
| 35 |
1 2 5 6 8 9
|
smfrec |
|
| 36 |
1 2 3 4 34 7 35
|
smfmul |
|
| 37 |
28 36
|
eqeltrd |
|