Metamath Proof Explorer


Theorem smfmul

Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmul.x x φ
smfmul.s φ S SAlg
smfmul.a φ A V
smfmul.b φ x A B
smfmul.d φ x C D
smfmul.m φ x A B SMblFn S
smfmul.n φ x C D SMblFn S
Assertion smfmul φ x A C B D SMblFn S

Proof

Step Hyp Ref Expression
1 smfmul.x x φ
2 smfmul.s φ S SAlg
3 smfmul.a φ A V
4 smfmul.b φ x A B
5 smfmul.d φ x C D
6 smfmul.m φ x A B SMblFn S
7 smfmul.n φ x C D SMblFn S
8 nfv a φ
9 elinel1 x A C x A
10 9 adantl φ x A C x A
11 1 10 ssdf φ A C A
12 eqid x A B = x A B
13 1 12 4 dmmptdf φ dom x A B = A
14 13 eqcomd φ A = dom x A B
15 eqid dom x A B = dom x A B
16 2 6 15 smfdmss φ dom x A B S
17 14 16 eqsstrd φ A S
18 11 17 sstrd φ A C S
19 10 4 syldan φ x A C B
20 elinel2 x A C x C
21 20 adantl φ x A C x C
22 21 5 syldan φ x A C D
23 19 22 remulcld φ x A C B D
24 nfv x a
25 1 24 nfan x φ a
26 2 adantr φ a S SAlg
27 3 adantr φ a A V
28 4 adantlr φ a x A B
29 5 adantlr φ a x C D
30 6 adantr φ a x A B SMblFn S
31 7 adantr φ a x C D SMblFn S
32 simpr φ a a
33 fveq1 p = q p 2 = q 2
34 fveq1 p = q p 3 = q 3
35 33 34 oveq12d p = q p 2 p 3 = q 2 q 3
36 35 raleqdv p = q v p 2 p 3 u v < a v q 2 q 3 u v < a
37 36 ralbidv p = q u p 0 p 1 v p 2 p 3 u v < a u p 0 p 1 v q 2 q 3 u v < a
38 fveq1 p = q p 0 = q 0
39 fveq1 p = q p 1 = q 1
40 38 39 oveq12d p = q p 0 p 1 = q 0 q 1
41 40 raleqdv p = q u p 0 p 1 v q 2 q 3 u v < a u q 0 q 1 v q 2 q 3 u v < a
42 37 41 bitrd p = q u p 0 p 1 v p 2 p 3 u v < a u q 0 q 1 v q 2 q 3 u v < a
43 42 cbvrabv p 0 3 | u p 0 p 1 v p 2 p 3 u v < a = q 0 3 | u q 0 q 1 v q 2 q 3 u v < a
44 eqid q p 0 3 | u p 0 p 1 v p 2 p 3 u v < a x A C | B q 0 q 1 D q 2 q 3 = q p 0 3 | u p 0 p 1 v p 2 p 3 u v < a x A C | B q 0 q 1 D q 2 q 3
45 25 26 27 28 29 30 31 32 43 44 smfmullem4 φ a x A C | B D < a S 𝑡 A C
46 1 8 2 18 23 45 issmfdmpt φ x A C B D SMblFn S