Metamath Proof Explorer


Theorem smfpimbor1lem1

Description: Every open set belongs to T . This is the second step in the proof of Proposition 121E (f) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem1.s φ S SAlg
smfpimbor1lem1.f φ F SMblFn S
smfpimbor1lem1.a D = dom F
smfpimbor1lem1.j J = topGen ran .
smfpimbor1lem1.8 φ G J
smfpimbor1lem1.t T = e 𝒫 | F -1 e S 𝑡 D
Assertion smfpimbor1lem1 φ G T

Proof

Step Hyp Ref Expression
1 smfpimbor1lem1.s φ S SAlg
2 smfpimbor1lem1.f φ F SMblFn S
3 smfpimbor1lem1.a D = dom F
4 smfpimbor1lem1.j J = topGen ran .
5 smfpimbor1lem1.8 φ G J
6 smfpimbor1lem1.t T = e 𝒫 | F -1 e S 𝑡 D
7 4 5 tgqioo2 φ q q . × G = q
8 simprr φ q . × G = q G = q
9 1 2 3 6 smfresal φ T SAlg
10 9 adantr φ q . × T SAlg
11 iooex . V
12 11 imaexi . × V
13 12 a1i q . × . × V
14 id q . × q . ×
15 13 14 ssexd q . × q V
16 15 adantl φ q . × q V
17 simpr φ q . × q . ×
18 ioofun Fun .
19 18 a1i q . × Fun .
20 id q . × q . ×
21 fvelima Fun . q . × p × . p = q
22 19 20 21 syl2anc q . × p × . p = q
23 22 adantl φ q . × p × . p = q
24 id . p = q . p = q
25 24 eqcomd . p = q q = . p
26 25 adantl p × . p = q q = . p
27 1st2nd2 p × p = 1 st p 2 nd p
28 27 fveq2d p × . p = . 1 st p 2 nd p
29 df-ov 1 st p 2 nd p = . 1 st p 2 nd p
30 29 eqcomi . 1 st p 2 nd p = 1 st p 2 nd p
31 30 a1i p × . 1 st p 2 nd p = 1 st p 2 nd p
32 28 31 eqtrd p × . p = 1 st p 2 nd p
33 32 adantr p × . p = q . p = 1 st p 2 nd p
34 26 33 eqtrd p × . p = q q = 1 st p 2 nd p
35 34 3adant1 φ p × . p = q q = 1 st p 2 nd p
36 ioossre 1 st p 2 nd p
37 ovex 1 st p 2 nd p V
38 37 elpw 1 st p 2 nd p 𝒫 1 st p 2 nd p
39 36 38 mpbir 1 st p 2 nd p 𝒫
40 39 a1i φ p × 1 st p 2 nd p 𝒫
41 1 adantr φ p × S SAlg
42 2 adantr φ p × F SMblFn S
43 xp1st p × 1 st p
44 43 qred p × 1 st p
45 44 rexrd p × 1 st p *
46 45 adantl φ p × 1 st p *
47 xp2nd p × 2 nd p
48 47 qred p × 2 nd p
49 48 rexrd p × 2 nd p *
50 49 adantl φ p × 2 nd p *
51 41 42 3 46 50 smfpimioo φ p × F -1 1 st p 2 nd p S 𝑡 D
52 40 51 jca φ p × 1 st p 2 nd p 𝒫 F -1 1 st p 2 nd p S 𝑡 D
53 imaeq2 e = 1 st p 2 nd p F -1 e = F -1 1 st p 2 nd p
54 53 eleq1d e = 1 st p 2 nd p F -1 e S 𝑡 D F -1 1 st p 2 nd p S 𝑡 D
55 54 6 elrab2 1 st p 2 nd p T 1 st p 2 nd p 𝒫 F -1 1 st p 2 nd p S 𝑡 D
56 52 55 sylibr φ p × 1 st p 2 nd p T
57 56 3adant3 φ p × . p = q 1 st p 2 nd p T
58 35 57 eqeltrd φ p × . p = q q T
59 58 3exp φ p × . p = q q T
60 59 rexlimdv φ p × . p = q q T
61 60 adantr φ q . × p × . p = q q T
62 23 61 mpd φ q . × q T
63 62 ssd φ . × T
64 63 adantr φ q . × . × T
65 17 64 sstrd φ q . × q T
66 16 65 elpwd φ q . × q 𝒫 T
67 ssdomg . × V q . × q . ×
68 12 67 ax-mp q . × q . ×
69 qct ω
70 69 69 pm3.2i ω ω
71 xpct ω ω × ω
72 70 71 ax-mp × ω
73 fimact × ω Fun . . × ω
74 72 18 73 mp2an . × ω
75 74 a1i q . × . × ω
76 domtr q . × . × ω q ω
77 68 75 76 syl2anc q . × q ω
78 77 adantl φ q . × q ω
79 10 66 78 salunicl φ q . × q T
80 79 adantrr φ q . × G = q q T
81 8 80 eqeltrd φ q . × G = q G T
82 81 ex φ q . × G = q G T
83 82 exlimdv φ q q . × G = q G T
84 7 83 mpd φ G T