Metamath Proof Explorer


Theorem fimact

Description: The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Assertion fimact A ω Fun F F A ω

Proof

Step Hyp Ref Expression
1 ctex A ω A V
2 imadomg A V Fun F F A A
3 2 imp A V Fun F F A A
4 1 3 sylan A ω Fun F F A A
5 simpl A ω Fun F A ω
6 domtr F A A A ω F A ω
7 4 5 6 syl2anc A ω Fun F F A ω