Metamath Proof Explorer


Theorem smfmulc1

Description: A sigma-measurable function multiplied by a constant is sigma-measurable. Proposition 121E (c) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmulc1.x 𝑥 𝜑
smfmulc1.s ( 𝜑𝑆 ∈ SAlg )
smfmulc1.a ( 𝜑𝐴𝑉 )
smfmulc1.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
smfmulc1.c ( 𝜑𝐶 ∈ ℝ )
smfmulc1.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
Assertion smfmulc1 ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfmulc1.x 𝑥 𝜑
2 smfmulc1.s ( 𝜑𝑆 ∈ SAlg )
3 smfmulc1.a ( 𝜑𝐴𝑉 )
4 smfmulc1.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
5 smfmulc1.c ( 𝜑𝐶 ∈ ℝ )
6 smfmulc1.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
7 inidm ( 𝐴𝐴 ) = 𝐴
8 7 eqcomi 𝐴 = ( 𝐴𝐴 )
9 8 mpteq1i ( 𝑥𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴𝐴 ) ↦ ( 𝐶 · 𝐵 ) )
10 9 a1i ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴𝐴 ) ↦ ( 𝐶 · 𝐵 ) ) )
11 5 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ )
12 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
13 1 12 4 dmmptdf ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
14 13 eqcomd ( 𝜑𝐴 = dom ( 𝑥𝐴𝐵 ) )
15 eqid dom ( 𝑥𝐴𝐵 ) = dom ( 𝑥𝐴𝐵 )
16 2 6 15 smfdmss ( 𝜑 → dom ( 𝑥𝐴𝐵 ) ⊆ 𝑆 )
17 14 16 eqsstrd ( 𝜑𝐴 𝑆 )
18 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
19 1 2 17 5 18 smfconst ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ ( SMblFn ‘ 𝑆 ) )
20 1 2 3 11 4 19 6 smfmul ( 𝜑 → ( 𝑥 ∈ ( 𝐴𝐴 ) ↦ ( 𝐶 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) )
21 10 20 eqeltrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) )