Step |
Hyp |
Ref |
Expression |
1 |
|
smfmulc1.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfmulc1.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfmulc1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
smfmulc1.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
5 |
|
smfmulc1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
smfmulc1.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
8 |
7
|
eqcomi |
⊢ 𝐴 = ( 𝐴 ∩ 𝐴 ) |
9 |
8
|
mpteq1i |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐴 ) ↦ ( 𝐶 · 𝐵 ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐴 ) ↦ ( 𝐶 · 𝐵 ) ) ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
13 |
1 12 4
|
dmmptdf |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
14 |
13
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
15 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
16 |
2 6 15
|
smfdmss |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ∪ 𝑆 ) |
17 |
14 16
|
eqsstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
19 |
1 2 17 5 18
|
smfconst |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
20 |
1 2 3 11 4 19 6
|
smfmul |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ 𝐴 ) ↦ ( 𝐶 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
21 |
10 20
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |