Metamath Proof Explorer


Theorem smfneg

Description: The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfneg.x 𝑥 𝜑
smfneg.s ( 𝜑𝑆 ∈ SAlg )
smfneg.a ( 𝜑𝐴𝑉 )
smfneg.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
smfneg.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
Assertion smfneg ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfneg.x 𝑥 𝜑
2 smfneg.s ( 𝜑𝑆 ∈ SAlg )
3 smfneg.a ( 𝜑𝐴𝑉 )
4 smfneg.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
5 smfneg.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
6 4 recnd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
7 6 mulm1d ( ( 𝜑𝑥𝐴 ) → ( - 1 · 𝐵 ) = - 𝐵 )
8 7 eqcomd ( ( 𝜑𝑥𝐴 ) → - 𝐵 = ( - 1 · 𝐵 ) )
9 1 8 mpteq2da ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐵 ) = ( 𝑥𝐴 ↦ ( - 1 · 𝐵 ) ) )
10 neg1rr - 1 ∈ ℝ
11 10 a1i ( 𝜑 → - 1 ∈ ℝ )
12 1 2 3 4 11 5 smfmulc1 ( 𝜑 → ( 𝑥𝐴 ↦ ( - 1 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) )
13 9 12 eqeltrd ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )