| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfneg.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfneg.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfneg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | smfneg.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | smfneg.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 6 | 4 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 7 | 6 | mulm1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( - 1  ·  𝐵 )  =  - 𝐵 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  =  ( - 1  ·  𝐵 ) ) | 
						
							| 9 | 1 8 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  ( - 1  ·  𝐵 ) ) ) | 
						
							| 10 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℝ ) | 
						
							| 12 | 1 2 3 4 11 5 | smfmulc1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( - 1  ·  𝐵 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 13 | 9 12 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) |