| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfneg.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smfneg.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smfneg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
smfneg.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
smfneg.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 6 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 7 |
6
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 = ( - 1 · 𝐵 ) ) |
| 9 |
1 8
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝐵 ) ) ) |
| 10 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 12 |
1 2 3 4 11 5
|
smfmulc1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 13 |
9 12
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |