Metamath Proof Explorer


Theorem smfneg

Description: The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfneg.x x φ
smfneg.s φ S SAlg
smfneg.a φ A V
smfneg.b φ x A B
smfneg.m φ x A B SMblFn S
Assertion smfneg φ x A B SMblFn S

Proof

Step Hyp Ref Expression
1 smfneg.x x φ
2 smfneg.s φ S SAlg
3 smfneg.a φ A V
4 smfneg.b φ x A B
5 smfneg.m φ x A B SMblFn S
6 4 recnd φ x A B
7 6 mulm1d φ x A -1 B = B
8 7 eqcomd φ x A B = -1 B
9 1 8 mpteq2da φ x A B = x A -1 B
10 neg1rr 1
11 10 a1i φ 1
12 1 2 3 4 11 5 smfmulc1 φ x A -1 B SMblFn S
13 9 12 eqeltrd φ x A B SMblFn S