Metamath Proof Explorer


Theorem smffmpt

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smffmpt.x xφ
smffmpt.s φSSAlg
smffmpt.b φxABV
smffmpt.m φxABSMblFnS
Assertion smffmpt φxAB:A

Proof

Step Hyp Ref Expression
1 smffmpt.x xφ
2 smffmpt.s φSSAlg
3 smffmpt.b φxABV
4 smffmpt.m φxABSMblFnS
5 nfcv _xA
6 1 5 2 3 4 smffmptf φxAB:A