Metamath Proof Explorer


Theorem smffmptf

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smffmptf.x x φ
smffmptf.a _ x A
smffmptf.s φ S SAlg
smffmptf.b φ x A B V
smffmptf.m φ x A B SMblFn S
Assertion smffmptf φ x A B : A

Proof

Step Hyp Ref Expression
1 smffmptf.x x φ
2 smffmptf.a _ x A
3 smffmptf.s φ S SAlg
4 smffmptf.b φ x A B V
5 smffmptf.m φ x A B SMblFn S
6 eqid dom x A B = dom x A B
7 3 5 6 smff φ x A B : dom x A B
8 1 2 4 dmmpt1 φ dom x A B = A
9 8 eqcomd φ A = dom x A B
10 9 feq2d φ x A B : A x A B : dom x A B
11 7 10 mpbird φ x A B : A