Metamath Proof Explorer


Theorem smffmpt

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smffmpt.x 𝑥 𝜑
smffmpt.s ( 𝜑𝑆 ∈ SAlg )
smffmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
smffmpt.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
Assertion smffmpt ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 smffmpt.x 𝑥 𝜑
2 smffmpt.s ( 𝜑𝑆 ∈ SAlg )
3 smffmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 smffmpt.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
5 nfcv 𝑥 𝐴
6 1 5 2 3 4 smffmptf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )