Metamath Proof Explorer
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function.
(Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
smffmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
|
|
smffmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
|
|
smffmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
|
|
smffmpt.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
|
Assertion |
smffmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smffmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smffmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smffmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
smffmpt.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 6 |
1 5 2 3 4
|
smffmptf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |