Metamath Proof Explorer
		
		
		
		Description:  A function measurable w.r.t. to a sigma-algebra, is actually a function.
       (Contributed by Glauco Siliprandi, 23-Oct-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | smffmpt.x | ⊢ Ⅎ 𝑥 𝜑 | 
					
						|  |  | smffmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
					
						|  |  | smffmpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
					
						|  |  | smffmpt.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
				
					|  | Assertion | smffmpt | ⊢  ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smffmpt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smffmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smffmpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | smffmpt.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 6 | 1 5 2 3 4 | smffmptf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℝ ) |