Metamath Proof Explorer


Theorem smffmpt

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smffmpt.x 𝑥 𝜑
smffmpt.s ( 𝜑𝑆 ∈ SAlg )
smffmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
smffmpt.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
Assertion smffmpt ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 smffmpt.x 𝑥 𝜑
2 smffmpt.s ( 𝜑𝑆 ∈ SAlg )
3 smffmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 smffmpt.m ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
5 eqid dom ( 𝑥𝐴𝐵 ) = dom ( 𝑥𝐴𝐵 )
6 2 4 5 smff ( 𝜑 → ( 𝑥𝐴𝐵 ) : dom ( 𝑥𝐴𝐵 ) ⟶ ℝ )
7 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
8 1 7 3 dmmptdf ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
9 8 eqcomd ( 𝜑𝐴 = dom ( 𝑥𝐴𝐵 ) )
10 9 feq2d ( 𝜑 → ( ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ ↔ ( 𝑥𝐴𝐵 ) : dom ( 𝑥𝐴𝐵 ) ⟶ ℝ ) )
11 6 10 mpbird ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )