Metamath Proof Explorer


Theorem smfco

Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfco.s φ S SAlg
smfco.f φ F SMblFn S
smfco.j J = topGen ran .
smfco.b B = SalGen J
smfco.h φ H SMblFn B
Assertion smfco φ H F SMblFn S

Proof

Step Hyp Ref Expression
1 smfco.s φ S SAlg
2 smfco.f φ F SMblFn S
3 smfco.j J = topGen ran .
4 smfco.b B = SalGen J
5 smfco.h φ H SMblFn B
6 nfv a φ
7 cnvimass F -1 dom H dom F
8 7 a1i φ F -1 dom H dom F
9 eqid dom F = dom F
10 1 2 9 smfdmss φ dom F S
11 8 10 sstrd φ F -1 dom H S
12 retop topGen ran . Top
13 3 12 eqeltri J Top
14 13 a1i φ J Top
15 14 4 salgencld φ B SAlg
16 eqid dom H = dom H
17 15 5 16 smff φ H : dom H
18 17 ffund φ Fun H
19 1 2 9 smff φ F : dom F
20 19 ffund φ Fun F
21 18 20 funcofd φ H F : F -1 dom H ran H
22 17 frnd φ ran H
23 21 22 fssd φ H F : F -1 dom H
24 cnvco H F -1 = F -1 H -1
25 24 imaeq1i H F -1 −∞ a = F -1 H -1 −∞ a
26 23 adantr φ a H F : F -1 dom H
27 rexr a a *
28 27 adantl φ a a *
29 26 28 preimaioomnf φ a H F -1 −∞ a = x F -1 dom H | H F x < a
30 imaco F -1 H -1 −∞ a = F -1 H -1 −∞ a
31 30 a1i φ a F -1 H -1 −∞ a = F -1 H -1 −∞ a
32 25 29 31 3eqtr3a φ a x F -1 dom H | H F x < a = F -1 H -1 −∞ a
33 17 adantr φ a H : dom H
34 33 28 preimaioomnf φ a H -1 −∞ a = x dom H | H x < a
35 15 adantr φ a B SAlg
36 5 adantr φ a H SMblFn B
37 simpr φ a a
38 35 36 16 37 smfpreimalt φ a x dom H | H x < a B 𝑡 dom H
39 34 38 eqeltrd φ a H -1 −∞ a B 𝑡 dom H
40 15 elexd φ B V
41 5 dmexd φ dom H V
42 elrest B V dom H V H -1 −∞ a B 𝑡 dom H e B H -1 −∞ a = e dom H
43 40 41 42 syl2anc φ H -1 −∞ a B 𝑡 dom H e B H -1 −∞ a = e dom H
44 43 adantr φ a H -1 −∞ a B 𝑡 dom H e B H -1 −∞ a = e dom H
45 39 44 mpbid φ a e B H -1 −∞ a = e dom H
46 imaeq2 H -1 −∞ a = e dom H F -1 H -1 −∞ a = F -1 e dom H
47 46 3ad2ant3 φ e B H -1 −∞ a = e dom H F -1 H -1 −∞ a = F -1 e dom H
48 ovexd φ e B S 𝑡 dom F V
49 2 elexd φ F V
50 cnvexg F V F -1 V
51 imaexg F -1 V F -1 dom H V
52 49 50 51 3syl φ F -1 dom H V
53 52 adantr φ e B F -1 dom H V
54 1 adantr φ e B S SAlg
55 2 adantr φ e B F SMblFn S
56 simpr φ e B e B
57 eqid F -1 e = F -1 e
58 54 55 9 3 4 56 57 smfpimbor1 φ e B F -1 e S 𝑡 dom F
59 eqid F -1 e F -1 dom H = F -1 e F -1 dom H
60 48 53 58 59 elrestd φ e B F -1 e F -1 dom H S 𝑡 dom F 𝑡 F -1 dom H
61 inpreima Fun F F -1 e dom H = F -1 e F -1 dom H
62 20 61 syl φ F -1 e dom H = F -1 e F -1 dom H
63 62 adantr φ e B F -1 e dom H = F -1 e F -1 dom H
64 2 dmexd φ dom F V
65 restabs S SAlg F -1 dom H dom F dom F V S 𝑡 dom F 𝑡 F -1 dom H = S 𝑡 F -1 dom H
66 1 8 64 65 syl3anc φ S 𝑡 dom F 𝑡 F -1 dom H = S 𝑡 F -1 dom H
67 66 eqcomd φ S 𝑡 F -1 dom H = S 𝑡 dom F 𝑡 F -1 dom H
68 67 adantr φ e B S 𝑡 F -1 dom H = S 𝑡 dom F 𝑡 F -1 dom H
69 60 63 68 3eltr4d φ e B F -1 e dom H S 𝑡 F -1 dom H
70 69 3adant3 φ e B H -1 −∞ a = e dom H F -1 e dom H S 𝑡 F -1 dom H
71 47 70 eqeltrd φ e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
72 71 3exp φ e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
73 72 adantr φ a e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
74 73 rexlimdv φ a e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
75 45 74 mpd φ a F -1 H -1 −∞ a S 𝑡 F -1 dom H
76 32 75 eqeltrd φ a x F -1 dom H | H F x < a S 𝑡 F -1 dom H
77 6 1 11 23 76 issmfd φ H F SMblFn S