Metamath Proof Explorer


Theorem funcofd

Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Hypotheses funcofd.1 φFunF
funcofd.2 φFunG
Assertion funcofd φFG:G-1domFranF

Proof

Step Hyp Ref Expression
1 funcofd.1 φFunF
2 funcofd.2 φFunG
3 fdmrn FunFF:domFranF
4 1 3 sylib φF:domFranF
5 fcof F:domFranFFunGFG:G-1domFranF
6 4 2 5 syl2anc φFG:G-1domFranF