Description: Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by AV, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcofd.1 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| funcofd.2 | ⊢ ( 𝜑 → Fun 𝐺 ) | ||
| Assertion | funcofd | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funcofd.1 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 2 | funcofd.2 | ⊢ ( 𝜑 → Fun 𝐺 ) | |
| 3 | fdmrn | ⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) | 
| 5 | fcof | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 ∧ Fun 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) | |
| 6 | 4 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ dom 𝐹 ) ⟶ ran 𝐹 ) |