| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smf2id.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 2 |  | smf2id.b |  |-  B = ( SalGen ` J ) | 
						
							| 3 |  | smf2id.a |  |-  ( ph -> A C_ RR ) | 
						
							| 4 |  | nfv |  |-  F/ x ph | 
						
							| 5 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 6 | 1 5 | eqeltri |  |-  J e. Top | 
						
							| 7 | 6 | a1i |  |-  ( ph -> J e. Top ) | 
						
							| 8 | 7 2 | salgencld |  |-  ( ph -> B e. SAlg ) | 
						
							| 9 |  | reex |  |-  RR e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 11 | 10 3 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ x e. A ) -> A C_ RR ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 14 | 12 13 | sseldd |  |-  ( ( ph /\ x e. A ) -> x e. RR ) | 
						
							| 15 |  | 2re |  |-  2 e. RR | 
						
							| 16 | 15 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 17 | 1 2 3 | smfid |  |-  ( ph -> ( x e. A |-> x ) e. ( SMblFn ` B ) ) | 
						
							| 18 | 4 8 11 14 16 17 | smfmulc1 |  |-  ( ph -> ( x e. A |-> ( 2 x. x ) ) e. ( SMblFn ` B ) ) |