Metamath Proof Explorer


Theorem imaexi

Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis imaexi.1
|- A e. V
Assertion imaexi
|- ( A " B ) e. _V

Proof

Step Hyp Ref Expression
1 imaexi.1
 |-  A e. V
2 imaexg
 |-  ( A e. V -> ( A " B ) e. _V )
3 1 2 ax-mp
 |-  ( A " B ) e. _V