Metamath Proof Explorer


Theorem imaexi

Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis imaexi.1 𝐴𝑉
Assertion imaexi ( 𝐴𝐵 ) ∈ V

Proof

Step Hyp Ref Expression
1 imaexi.1 𝐴𝑉
2 imaexg ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
3 1 2 ax-mp ( 𝐴𝐵 ) ∈ V