| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimcc.1 |  |-  F/_ n F | 
						
							| 2 |  | smfpimcc.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smfpimcc.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfpimcc.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smfpimcc.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 6 |  | smfpimcc.b |  |-  B = ( SalGen ` J ) | 
						
							| 7 |  | smfpimcc.a |  |-  ( ph -> A e. B ) | 
						
							| 8 | 2 | uzct |  |-  Z ~<_ _om | 
						
							| 9 | 8 | a1i |  |-  ( ph -> Z ~<_ _om ) | 
						
							| 10 |  | mptct |  |-  ( Z ~<_ _om -> ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om ) | 
						
							| 11 |  | rnct |  |-  ( ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om -> ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om ) | 
						
							| 12 | 9 10 11 | 3syl |  |-  ( ph -> ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om ) | 
						
							| 13 |  | vex |  |-  y e. _V | 
						
							| 14 |  | eqid |  |-  ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) = ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 15 | 14 | elrnmpt |  |-  ( y e. _V -> ( y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) <-> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) | 
						
							| 16 | 13 15 | ax-mp |  |-  ( y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) <-> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 17 | 16 | biimpi |  |-  ( y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 19 |  | simp3 |  |-  ( ( ph /\ m e. Z /\ y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ m e. Z ) -> S e. SAlg ) | 
						
							| 21 | 4 | ffvelcdmda |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 22 |  | eqid |  |-  dom ( F ` m ) = dom ( F ` m ) | 
						
							| 23 | 7 | adantr |  |-  ( ( ph /\ m e. Z ) -> A e. B ) | 
						
							| 24 |  | eqid |  |-  ( `' ( F ` m ) " A ) = ( `' ( F ` m ) " A ) | 
						
							| 25 | 20 21 22 5 6 23 24 | smfpimbor1 |  |-  ( ( ph /\ m e. Z ) -> ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) ) | 
						
							| 26 |  | fvex |  |-  ( F ` m ) e. _V | 
						
							| 27 | 26 | dmex |  |-  dom ( F ` m ) e. _V | 
						
							| 28 | 27 | a1i |  |-  ( ph -> dom ( F ` m ) e. _V ) | 
						
							| 29 |  | elrest |  |-  ( ( S e. SAlg /\ dom ( F ` m ) e. _V ) -> ( ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) ) | 
						
							| 30 | 3 28 29 | syl2anc |  |-  ( ph -> ( ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ m e. Z ) -> ( ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) ) | 
						
							| 32 | 25 31 | mpbid |  |-  ( ( ph /\ m e. Z ) -> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) | 
						
							| 33 |  | rabn0 |  |-  ( { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } =/= (/) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) | 
						
							| 34 | 32 33 | sylibr |  |-  ( ( ph /\ m e. Z ) -> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } =/= (/) ) | 
						
							| 35 | 34 | 3adant3 |  |-  ( ( ph /\ m e. Z /\ y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } =/= (/) ) | 
						
							| 36 | 19 35 | eqnetrd |  |-  ( ( ph /\ m e. Z /\ y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> y =/= (/) ) | 
						
							| 37 | 36 | 3exp |  |-  ( ph -> ( m e. Z -> ( y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) ) | 
						
							| 38 | 37 | rexlimdv |  |-  ( ph -> ( E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> ( E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) | 
						
							| 40 | 18 39 | mpd |  |-  ( ( ph /\ y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> y =/= (/) ) | 
						
							| 41 | 12 40 | axccd2 |  |-  ( ph -> E. f A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) | 
						
							| 42 |  | nfv |  |-  F/ m ph | 
						
							| 43 |  | nfmpt1 |  |-  F/_ m ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 44 | 43 | nfrn |  |-  F/_ m ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) | 
						
							| 45 |  | nfv |  |-  F/ m ( f ` y ) e. y | 
						
							| 46 | 44 45 | nfralw |  |-  F/ m A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y | 
						
							| 47 | 42 46 | nfan |  |-  F/ m ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) | 
						
							| 48 | 2 | fvexi |  |-  Z e. _V | 
						
							| 49 | 3 | adantr |  |-  ( ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) -> S e. SAlg ) | 
						
							| 50 |  | fveq2 |  |-  ( y = w -> ( f ` y ) = ( f ` w ) ) | 
						
							| 51 |  | id |  |-  ( y = w -> y = w ) | 
						
							| 52 | 50 51 | eleq12d |  |-  ( y = w -> ( ( f ` y ) e. y <-> ( f ` w ) e. w ) ) | 
						
							| 53 | 52 | rspccva |  |-  ( ( A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y /\ w e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> ( f ` w ) e. w ) | 
						
							| 54 | 53 | adantll |  |-  ( ( ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) /\ w e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> ( f ` w ) e. w ) | 
						
							| 55 |  | eqid |  |-  ( m e. Z |-> ( f ` { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) = ( m e. Z |-> ( f ` { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) | 
						
							| 56 | 47 48 49 54 55 | smfpimcclem |  |-  ( ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) | 
						
							| 57 | 56 | ex |  |-  ( ph -> ( A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) ) | 
						
							| 58 | 57 | exlimdv |  |-  ( ph -> ( E. f A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) ) | 
						
							| 59 | 41 58 | mpd |  |-  ( ph -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) | 
						
							| 60 |  | nfcv |  |-  F/_ n m | 
						
							| 61 | 1 60 | nffv |  |-  F/_ n ( F ` m ) | 
						
							| 62 | 61 | nfcnv |  |-  F/_ n `' ( F ` m ) | 
						
							| 63 |  | nfcv |  |-  F/_ n A | 
						
							| 64 | 62 63 | nfima |  |-  F/_ n ( `' ( F ` m ) " A ) | 
						
							| 65 |  | nfcv |  |-  F/_ n ( h ` m ) | 
						
							| 66 | 61 | nfdm |  |-  F/_ n dom ( F ` m ) | 
						
							| 67 | 65 66 | nfin |  |-  F/_ n ( ( h ` m ) i^i dom ( F ` m ) ) | 
						
							| 68 | 64 67 | nfeq |  |-  F/ n ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) | 
						
							| 69 |  | nfv |  |-  F/ m ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) | 
						
							| 70 |  | fveq2 |  |-  ( m = n -> ( F ` m ) = ( F ` n ) ) | 
						
							| 71 | 70 | cnveqd |  |-  ( m = n -> `' ( F ` m ) = `' ( F ` n ) ) | 
						
							| 72 | 71 | imaeq1d |  |-  ( m = n -> ( `' ( F ` m ) " A ) = ( `' ( F ` n ) " A ) ) | 
						
							| 73 |  | fveq2 |  |-  ( m = n -> ( h ` m ) = ( h ` n ) ) | 
						
							| 74 | 70 | dmeqd |  |-  ( m = n -> dom ( F ` m ) = dom ( F ` n ) ) | 
						
							| 75 | 73 74 | ineq12d |  |-  ( m = n -> ( ( h ` m ) i^i dom ( F ` m ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 76 | 72 75 | eqeq12d |  |-  ( m = n -> ( ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) <-> ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 77 | 68 69 76 | cbvralw |  |-  ( A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) <-> A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 78 | 77 | anbi2i |  |-  ( ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) <-> ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 79 | 78 | exbii |  |-  ( E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) <-> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 80 | 59 79 | sylib |  |-  ( ph -> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |