Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimcc.1 |
|- F/_ n F |
2 |
|
smfpimcc.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
smfpimcc.s |
|- ( ph -> S e. SAlg ) |
4 |
|
smfpimcc.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
5 |
|
smfpimcc.j |
|- J = ( topGen ` ran (,) ) |
6 |
|
smfpimcc.b |
|- B = ( SalGen ` J ) |
7 |
|
smfpimcc.a |
|- ( ph -> A e. B ) |
8 |
2
|
uzct |
|- Z ~<_ _om |
9 |
8
|
a1i |
|- ( ph -> Z ~<_ _om ) |
10 |
|
mptct |
|- ( Z ~<_ _om -> ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om ) |
11 |
|
rnct |
|- ( ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om -> ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om ) |
12 |
9 10 11
|
3syl |
|- ( ph -> ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ~<_ _om ) |
13 |
|
vex |
|- y e. _V |
14 |
|
eqid |
|- ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) = ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
15 |
14
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) <-> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) |
16 |
13 15
|
ax-mp |
|- ( y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) <-> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
17 |
16
|
biimpi |
|- ( y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
18 |
17
|
adantl |
|- ( ( ph /\ y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
19 |
|
simp3 |
|- ( ( ph /\ m e. Z /\ y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
20 |
3
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
21 |
4
|
ffvelrnda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
22 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
23 |
7
|
adantr |
|- ( ( ph /\ m e. Z ) -> A e. B ) |
24 |
|
eqid |
|- ( `' ( F ` m ) " A ) = ( `' ( F ` m ) " A ) |
25 |
20 21 22 5 6 23 24
|
smfpimbor1 |
|- ( ( ph /\ m e. Z ) -> ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) ) |
26 |
|
fvex |
|- ( F ` m ) e. _V |
27 |
26
|
dmex |
|- dom ( F ` m ) e. _V |
28 |
27
|
a1i |
|- ( ph -> dom ( F ` m ) e. _V ) |
29 |
|
elrest |
|- ( ( S e. SAlg /\ dom ( F ` m ) e. _V ) -> ( ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) ) |
30 |
3 28 29
|
syl2anc |
|- ( ph -> ( ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ m e. Z ) -> ( ( `' ( F ` m ) " A ) e. ( S |`t dom ( F ` m ) ) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) ) |
32 |
25 31
|
mpbid |
|- ( ( ph /\ m e. Z ) -> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) |
33 |
|
rabn0 |
|- ( { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } =/= (/) <-> E. s e. S ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) ) |
34 |
32 33
|
sylibr |
|- ( ( ph /\ m e. Z ) -> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } =/= (/) ) |
35 |
34
|
3adant3 |
|- ( ( ph /\ m e. Z /\ y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } =/= (/) ) |
36 |
19 35
|
eqnetrd |
|- ( ( ph /\ m e. Z /\ y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) -> y =/= (/) ) |
37 |
36
|
3exp |
|- ( ph -> ( m e. Z -> ( y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) ) |
38 |
37
|
rexlimdv |
|- ( ph -> ( E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> ( E. m e. Z y = { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } -> y =/= (/) ) ) |
40 |
18 39
|
mpd |
|- ( ( ph /\ y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> y =/= (/) ) |
41 |
12 40
|
axccd2 |
|- ( ph -> E. f A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) |
42 |
|
nfv |
|- F/ m ph |
43 |
|
nfmpt1 |
|- F/_ m ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
44 |
43
|
nfrn |
|- F/_ m ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) |
45 |
|
nfv |
|- F/ m ( f ` y ) e. y |
46 |
44 45
|
nfralw |
|- F/ m A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y |
47 |
42 46
|
nfan |
|- F/ m ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) |
48 |
2
|
fvexi |
|- Z e. _V |
49 |
3
|
adantr |
|- ( ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) -> S e. SAlg ) |
50 |
|
fveq2 |
|- ( y = w -> ( f ` y ) = ( f ` w ) ) |
51 |
|
id |
|- ( y = w -> y = w ) |
52 |
50 51
|
eleq12d |
|- ( y = w -> ( ( f ` y ) e. y <-> ( f ` w ) e. w ) ) |
53 |
52
|
rspccva |
|- ( ( A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y /\ w e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> ( f ` w ) e. w ) |
54 |
53
|
adantll |
|- ( ( ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) /\ w e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) -> ( f ` w ) e. w ) |
55 |
|
eqid |
|- ( m e. Z |-> ( f ` { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) = ( m e. Z |-> ( f ` { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ) |
56 |
47 48 49 54 55
|
smfpimcclem |
|- ( ( ph /\ A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y ) -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) |
57 |
56
|
ex |
|- ( ph -> ( A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) ) |
58 |
57
|
exlimdv |
|- ( ph -> ( E. f A. y e. ran ( m e. Z |-> { s e. S | ( `' ( F ` m ) " A ) = ( s i^i dom ( F ` m ) ) } ) ( f ` y ) e. y -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) ) |
59 |
41 58
|
mpd |
|- ( ph -> E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) |
60 |
|
nfcv |
|- F/_ n m |
61 |
1 60
|
nffv |
|- F/_ n ( F ` m ) |
62 |
61
|
nfcnv |
|- F/_ n `' ( F ` m ) |
63 |
|
nfcv |
|- F/_ n A |
64 |
62 63
|
nfima |
|- F/_ n ( `' ( F ` m ) " A ) |
65 |
|
nfcv |
|- F/_ n ( h ` m ) |
66 |
61
|
nfdm |
|- F/_ n dom ( F ` m ) |
67 |
65 66
|
nfin |
|- F/_ n ( ( h ` m ) i^i dom ( F ` m ) ) |
68 |
64 67
|
nfeq |
|- F/ n ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) |
69 |
|
nfv |
|- F/ m ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) |
70 |
|
fveq2 |
|- ( m = n -> ( F ` m ) = ( F ` n ) ) |
71 |
70
|
cnveqd |
|- ( m = n -> `' ( F ` m ) = `' ( F ` n ) ) |
72 |
71
|
imaeq1d |
|- ( m = n -> ( `' ( F ` m ) " A ) = ( `' ( F ` n ) " A ) ) |
73 |
|
fveq2 |
|- ( m = n -> ( h ` m ) = ( h ` n ) ) |
74 |
70
|
dmeqd |
|- ( m = n -> dom ( F ` m ) = dom ( F ` n ) ) |
75 |
73 74
|
ineq12d |
|- ( m = n -> ( ( h ` m ) i^i dom ( F ` m ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) |
76 |
72 75
|
eqeq12d |
|- ( m = n -> ( ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) <-> ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |
77 |
68 69 76
|
cbvralw |
|- ( A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) <-> A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) |
78 |
77
|
anbi2i |
|- ( ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) <-> ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |
79 |
78
|
exbii |
|- ( E. h ( h : Z --> S /\ A. m e. Z ( `' ( F ` m ) " A ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) <-> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |
80 |
59 79
|
sylib |
|- ( ph -> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |