Metamath Proof Explorer


Theorem mptct

Description: A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion mptct
|- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om )

Proof

Step Hyp Ref Expression
1 funmpt
 |-  Fun ( x e. A |-> B )
2 ctex
 |-  ( A ~<_ _om -> A e. _V )
3 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
4 3 dmmptss
 |-  dom ( x e. A |-> B ) C_ A
5 ssdomg
 |-  ( A e. _V -> ( dom ( x e. A |-> B ) C_ A -> dom ( x e. A |-> B ) ~<_ A ) )
6 2 4 5 mpisyl
 |-  ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ A )
7 domtr
 |-  ( ( dom ( x e. A |-> B ) ~<_ A /\ A ~<_ _om ) -> dom ( x e. A |-> B ) ~<_ _om )
8 6 7 mpancom
 |-  ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ _om )
9 funfn
 |-  ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) )
10 fnct
 |-  ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om )
11 9 10 sylanb
 |-  ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om )
12 1 8 11 sylancr
 |-  ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om )