| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimcclem.n |  |-  F/ n ph | 
						
							| 2 |  | smfpimcclem.z |  |-  Z e. V | 
						
							| 3 |  | smfpimcclem.s |  |-  ( ph -> S e. W ) | 
						
							| 4 |  | smfpimcclem.c |  |-  ( ( ph /\ y e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) -> ( C ` y ) e. y ) | 
						
							| 5 |  | smfpimcclem.h |  |-  H = ( n e. Z |-> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 6 |  | nfcv |  |-  F/_ s S | 
						
							| 7 | 6 | ssrab2f |  |-  { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } C_ S | 
						
							| 8 |  | eqid |  |-  { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } | 
						
							| 9 | 8 3 | rabexd |  |-  ( ph -> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. _V ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ n e. Z ) -> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. _V ) | 
						
							| 11 |  | simpl |  |-  ( ( ph /\ n e. Z ) -> ph ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ n e. Z ) -> n e. Z ) | 
						
							| 13 |  | eqid |  |-  ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) = ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) | 
						
							| 14 | 13 | elrnmpt1 |  |-  ( ( n e. Z /\ { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. _V ) -> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 15 | 12 10 14 | syl2anc |  |-  ( ( ph /\ n e. Z ) -> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 16 | 11 15 | jca |  |-  ( ( ph /\ n e. Z ) -> ( ph /\ { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } -> ( y e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) <-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) ) | 
						
							| 18 | 17 | anbi2d |  |-  ( y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } -> ( ( ph /\ y e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) <-> ( ph /\ { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } -> ( C ` y ) = ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 20 |  | id |  |-  ( y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } -> y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) | 
						
							| 21 | 19 20 | eleq12d |  |-  ( y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } -> ( ( C ` y ) e. y <-> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 22 | 18 21 | imbi12d |  |-  ( y = { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } -> ( ( ( ph /\ y e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) -> ( C ` y ) e. y ) <-> ( ( ph /\ { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) -> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) ) | 
						
							| 23 | 22 4 | vtoclg |  |-  ( { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. _V -> ( ( ph /\ { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } e. ran ( n e. Z |-> { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) -> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 24 | 10 16 23 | sylc |  |-  ( ( ph /\ n e. Z ) -> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) | 
						
							| 25 | 7 24 | sselid |  |-  ( ( ph /\ n e. Z ) -> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. S ) | 
						
							| 26 | 1 25 5 | fmptdf |  |-  ( ph -> H : Z --> S ) | 
						
							| 27 |  | nfcv |  |-  F/_ s C | 
						
							| 28 |  | nfrab1 |  |-  F/_ s { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } | 
						
							| 29 | 27 28 | nffv |  |-  F/_ s ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) | 
						
							| 30 |  | nfcv |  |-  F/_ s ( `' ( F ` n ) " A ) | 
						
							| 31 |  | nfcv |  |-  F/_ s dom ( F ` n ) | 
						
							| 32 | 29 31 | nfin |  |-  F/_ s ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) | 
						
							| 33 | 30 32 | nfeq |  |-  F/ s ( `' ( F ` n ) " A ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) | 
						
							| 34 |  | ineq1 |  |-  ( s = ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) -> ( s i^i dom ( F ` n ) ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) ) | 
						
							| 35 | 34 | eqeq2d |  |-  ( s = ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) -> ( ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) <-> ( `' ( F ` n ) " A ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) ) ) | 
						
							| 36 | 29 6 33 35 | elrabf |  |-  ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } <-> ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. S /\ ( `' ( F ` n ) " A ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) ) ) | 
						
							| 37 | 24 36 | sylib |  |-  ( ( ph /\ n e. Z ) -> ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. S /\ ( `' ( F ` n ) " A ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) ) ) | 
						
							| 38 | 37 | simprd |  |-  ( ( ph /\ n e. Z ) -> ( `' ( F ` n ) " A ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) ) | 
						
							| 39 | 5 | a1i |  |-  ( ph -> H = ( n e. Z |-> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) ) | 
						
							| 40 | 24 | elexd |  |-  ( ( ph /\ n e. Z ) -> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) e. _V ) | 
						
							| 41 | 39 40 | fvmpt2d |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) = ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 42 | 41 | ineq1d |  |-  ( ( ph /\ n e. Z ) -> ( ( H ` n ) i^i dom ( F ` n ) ) = ( ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) i^i dom ( F ` n ) ) ) | 
						
							| 43 | 38 42 | eqtr4d |  |-  ( ( ph /\ n e. Z ) -> ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 44 | 43 | ex |  |-  ( ph -> ( n e. Z -> ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 45 | 1 44 | ralrimi |  |-  ( ph -> A. n e. Z ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 46 | 2 | elexi |  |-  Z e. _V | 
						
							| 47 | 46 | mptex |  |-  ( n e. Z |-> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) e. _V | 
						
							| 48 | 5 47 | eqeltri |  |-  H e. _V | 
						
							| 49 |  | feq1 |  |-  ( h = H -> ( h : Z --> S <-> H : Z --> S ) ) | 
						
							| 50 |  | nfcv |  |-  F/_ n h | 
						
							| 51 |  | nfmpt1 |  |-  F/_ n ( n e. Z |-> ( C ` { s e. S | ( `' ( F ` n ) " A ) = ( s i^i dom ( F ` n ) ) } ) ) | 
						
							| 52 | 5 51 | nfcxfr |  |-  F/_ n H | 
						
							| 53 | 50 52 | nfeq |  |-  F/ n h = H | 
						
							| 54 |  | fveq1 |  |-  ( h = H -> ( h ` n ) = ( H ` n ) ) | 
						
							| 55 | 54 | ineq1d |  |-  ( h = H -> ( ( h ` n ) i^i dom ( F ` n ) ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 56 | 55 | eqeq2d |  |-  ( h = H -> ( ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) <-> ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 57 | 53 56 | ralbid |  |-  ( h = H -> ( A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) <-> A. n e. Z ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 58 | 49 57 | anbi12d |  |-  ( h = H -> ( ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) <-> ( H : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) ) ) | 
						
							| 59 | 48 58 | spcev |  |-  ( ( H : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) -> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 60 | 26 45 59 | syl2anc |  |-  ( ph -> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " A ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |