| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimcclem.n | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | smfpimcclem.z | ⊢ 𝑍  ∈  𝑉 | 
						
							| 3 |  | smfpimcclem.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 4 |  | smfpimcclem.c | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) )  →  ( 𝐶 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 5 |  | smfpimcclem.h | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑠 𝑆 | 
						
							| 7 | 6 | ssrab2f | ⊢ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ⊆  𝑆 | 
						
							| 8 |  | eqid | ⊢ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } | 
						
							| 9 | 8 3 | rabexd | ⊢ ( 𝜑  →  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  V ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  V ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  =  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) | 
						
							| 14 | 13 | elrnmpt1 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  V )  →  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 15 | 12 10 14 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 16 | 11 15 | jca | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝜑  ∧  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) ) | 
						
							| 17 |  | eleq1 | ⊢ ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  →  ( 𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ↔  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  →  ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) )  ↔  ( 𝜑  ∧  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  →  ( 𝐶 ‘ 𝑦 )  =  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 20 |  | id | ⊢ ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  →  𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) | 
						
							| 21 | 19 20 | eleq12d | ⊢ ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  →  ( ( 𝐶 ‘ 𝑦 )  ∈  𝑦  ↔  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 22 | 18 21 | imbi12d | ⊢ ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  →  ( ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) )  →  ( 𝐶 ‘ 𝑦 )  ∈  𝑦 )  ↔  ( ( 𝜑  ∧  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) )  →  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) ) | 
						
							| 23 | 22 4 | vtoclg | ⊢ ( { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  V  →  ( ( 𝜑  ∧  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ∈  ran  ( 𝑛  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) )  →  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 24 | 10 16 23 | sylc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) | 
						
							| 25 | 7 24 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  𝑆 ) | 
						
							| 26 | 1 25 5 | fmptdf | ⊢ ( 𝜑  →  𝐻 : 𝑍 ⟶ 𝑆 ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑠 𝐶 | 
						
							| 28 |  | nfrab1 | ⊢ Ⅎ 𝑠 { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } | 
						
							| 29 | 27 28 | nffv | ⊢ Ⅎ 𝑠 ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑠 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 ) | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑠 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 32 | 29 31 | nfin | ⊢ Ⅎ 𝑠 ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 33 | 30 32 | nfeq | ⊢ Ⅎ 𝑠 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 34 |  | ineq1 | ⊢ ( 𝑠  =  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  →  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 35 | 34 | eqeq2d | ⊢ ( 𝑠  =  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  →  ( ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  ↔  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 36 | 29 6 33 35 | elrabf | ⊢ ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) }  ↔  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  𝑆  ∧  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 37 | 24 36 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  𝑆  ∧  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 38 | 37 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 39 | 5 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) ) | 
						
							| 40 | 24 | elexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∈  V ) | 
						
							| 41 | 39 40 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 42 | 41 | ineq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 43 | 38 42 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 45 | 1 44 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 46 | 2 | elexi | ⊢ 𝑍  ∈  V | 
						
							| 47 | 46 | mptex | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) )  ∈  V | 
						
							| 48 | 5 47 | eqeltri | ⊢ 𝐻  ∈  V | 
						
							| 49 |  | feq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ : 𝑍 ⟶ 𝑆  ↔  𝐻 : 𝑍 ⟶ 𝑆 ) ) | 
						
							| 50 |  | nfcv | ⊢ Ⅎ 𝑛 ℎ | 
						
							| 51 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  𝑍  ↦  ( 𝐶 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) } ) ) | 
						
							| 52 | 5 51 | nfcxfr | ⊢ Ⅎ 𝑛 𝐻 | 
						
							| 53 | 50 52 | nfeq | ⊢ Ⅎ 𝑛 ℎ  =  𝐻 | 
						
							| 54 |  | fveq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ ‘ 𝑛 )  =  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 55 | 54 | ineq1d | ⊢ ( ℎ  =  𝐻  →  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 56 | 55 | eqeq2d | ⊢ ( ℎ  =  𝐻  →  ( ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  ↔  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 57 | 53 56 | ralbid | ⊢ ( ℎ  =  𝐻  →  ( ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  ↔  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 58 | 49 57 | anbi12d | ⊢ ( ℎ  =  𝐻  →  ( ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) )  ↔  ( 𝐻 : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 59 | 48 58 | spcev | ⊢ ( ( 𝐻 : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) )  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 60 | 26 45 59 | syl2anc | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) |