Metamath Proof Explorer


Theorem issmfle2d

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses issmfle2d.a
|- F/ a ph
issmfle2d.s
|- ( ph -> S e. SAlg )
issmfle2d.d
|- ( ph -> D C_ U. S )
issmfle2d.f
|- ( ph -> F : D --> RR )
issmfle2d.l
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) e. ( S |`t D ) )
Assertion issmfle2d
|- ( ph -> F e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 issmfle2d.a
 |-  F/ a ph
2 issmfle2d.s
 |-  ( ph -> S e. SAlg )
3 issmfle2d.d
 |-  ( ph -> D C_ U. S )
4 issmfle2d.f
 |-  ( ph -> F : D --> RR )
5 issmfle2d.l
 |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) e. ( S |`t D ) )
6 4 adantr
 |-  ( ( ph /\ a e. RR ) -> F : D --> RR )
7 rexr
 |-  ( a e. RR -> a e. RR* )
8 7 adantl
 |-  ( ( ph /\ a e. RR ) -> a e. RR* )
9 6 8 preimaiocmnf
 |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) = { x e. D | ( F ` x ) <_ a } )
10 9 5 eqeltrrd
 |-  ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) <_ a } e. ( S |`t D ) )
11 1 2 3 4 10 issmfled
 |-  ( ph -> F e. ( SMblFn ` S ) )