| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issmfle2d.a |
|- F/ a ph |
| 2 |
|
issmfle2d.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
issmfle2d.d |
|- ( ph -> D C_ U. S ) |
| 4 |
|
issmfle2d.f |
|- ( ph -> F : D --> RR ) |
| 5 |
|
issmfle2d.l |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) e. ( S |`t D ) ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : D --> RR ) |
| 7 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
| 9 |
6 8
|
preimaiocmnf |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) = { x e. D | ( F ` x ) <_ a } ) |
| 10 |
9 5
|
eqeltrrd |
|- ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) <_ a } e. ( S |`t D ) ) |
| 11 |
1 2 3 4 10
|
issmfled |
|- ( ph -> F e. ( SMblFn ` S ) ) |