| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmfle2d.a |  |-  F/ a ph | 
						
							| 2 |  | issmfle2d.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | issmfle2d.d |  |-  ( ph -> D C_ U. S ) | 
						
							| 4 |  | issmfle2d.f |  |-  ( ph -> F : D --> RR ) | 
						
							| 5 |  | issmfle2d.l |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) e. ( S |`t D ) ) | 
						
							| 6 | 4 | adantr |  |-  ( ( ph /\ a e. RR ) -> F : D --> RR ) | 
						
							| 7 |  | rexr |  |-  ( a e. RR -> a e. RR* ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ a e. RR ) -> a e. RR* ) | 
						
							| 9 | 6 8 | preimaiocmnf |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,] a ) ) = { x e. D | ( F ` x ) <_ a } ) | 
						
							| 10 | 9 5 | eqeltrrd |  |-  ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) <_ a } e. ( S |`t D ) ) | 
						
							| 11 | 1 2 3 4 10 | issmfled |  |-  ( ph -> F e. ( SMblFn ` S ) ) |