Metamath Proof Explorer


Theorem issmfle2d

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses issmfle2d.a aφ
issmfle2d.s φSSAlg
issmfle2d.d φDS
issmfle2d.f φF:D
issmfle2d.l φaF-1−∞aS𝑡D
Assertion issmfle2d φFSMblFnS

Proof

Step Hyp Ref Expression
1 issmfle2d.a aφ
2 issmfle2d.s φSSAlg
3 issmfle2d.d φDS
4 issmfle2d.f φF:D
5 issmfle2d.l φaF-1−∞aS𝑡D
6 4 adantr φaF:D
7 rexr aa*
8 7 adantl φaa*
9 6 8 preimaiocmnf φaF-1−∞a=xD|Fxa
10 9 5 eqeltrrd φaxD|FxaS𝑡D
11 1 2 3 4 10 issmfled φFSMblFnS