Metamath Proof Explorer


Theorem issmfle2d

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses issmfle2d.a 𝑎 𝜑
issmfle2d.s ( 𝜑𝑆 ∈ SAlg )
issmfle2d.d ( 𝜑𝐷 𝑆 )
issmfle2d.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
issmfle2d.l ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,] 𝑎 ) ) ∈ ( 𝑆t 𝐷 ) )
Assertion issmfle2d ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 issmfle2d.a 𝑎 𝜑
2 issmfle2d.s ( 𝜑𝑆 ∈ SAlg )
3 issmfle2d.d ( 𝜑𝐷 𝑆 )
4 issmfle2d.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
5 issmfle2d.l ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,] 𝑎 ) ) ∈ ( 𝑆t 𝐷 ) )
6 4 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ )
7 rexr ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* )
8 7 adantl ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* )
9 6 8 preimaiocmnf ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,] 𝑎 ) ) = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } )
10 9 5 eqeltrrd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
11 1 2 3 4 10 issmfled ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )