Step |
Hyp |
Ref |
Expression |
1 |
|
issmfle2d.a |
⊢ Ⅎ 𝑎 𝜑 |
2 |
|
issmfle2d.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
issmfle2d.d |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
4 |
|
issmfle2d.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
5 |
|
issmfle2d.l |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,] 𝑎 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ ) |
7 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
9 |
6 8
|
preimaiocmnf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,] 𝑎 ) ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ) |
10 |
9 5
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
11 |
1 2 3 4 10
|
issmfled |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |