| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimmpt.p |
⊢ Ⅎ 𝑚 𝜑 |
| 2 |
|
smflimmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 3 |
|
smflimmpt.n |
⊢ Ⅎ 𝑛 𝜑 |
| 4 |
|
smflimmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 |
|
smflimmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 6 |
|
smflimmpt.a |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐴 ∈ 𝑉 ) |
| 7 |
|
smflimmpt.b |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 8 |
|
smflimmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 9 |
|
smflimmpt.l |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 10 |
|
smflimmpt.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } |
| 11 |
|
smflimmpt.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 13 |
10
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
| 15 |
1 14
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 16 |
5
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 17 |
16
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 19 |
6
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 20 |
18 17 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 21 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 22 |
21
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 23 |
17 20 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 24 |
23
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 25 |
|
nfv |
⊢ Ⅎ 𝑥 𝑛 ∈ 𝑍 |
| 26 |
2 25
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) |
| 28 |
26 27
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 29 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) |
| 30 |
17
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ 𝑍 ) |
| 31 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 32 |
29 30 31 7
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 34 |
28 32 33
|
fnmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 35 |
34
|
fndmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 36 |
24 35
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐴 = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 37 |
15 36
|
iineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 38 |
3 37
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
| 40 |
39 19 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 41 |
40
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 42 |
41
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 43 |
18 17 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 44 |
15 43
|
iineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 45 |
3 44
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 46 |
38 45
|
eqtr4d |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 47 |
46
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ↔ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 48 |
47
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 49 |
48
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 50 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 51 |
50
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 53 |
52
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 54 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ |
| 55 |
3 54
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 56 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
| 57 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
| 59 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
| 60 |
58 59
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
| 61 |
15 60
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 62 |
5
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 63 |
62
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ℤ ) |
| 64 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 65 |
5
|
fvexi |
⊢ 𝑍 ∈ V |
| 66 |
65
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑍 ∈ V ) |
| 67 |
5
|
uzssd3 |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 68 |
67
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 69 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ V ) |
| 70 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 71 |
70
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 72 |
18
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 73 |
17
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 74 |
72 73 71 7
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ 𝑊 ) |
| 75 |
33
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 76 |
71 74 75
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 77 |
61 63 64 66 66 68 68 69 76
|
climeldmeqmpt3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
| 78 |
77
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
| 79 |
57 78
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 80 |
79
|
exp31 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
| 81 |
55 56 80
|
rexlimd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
| 82 |
81
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
| 83 |
53 82
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 84 |
49 83
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
| 85 |
84
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
| 86 |
47
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 87 |
86
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 88 |
87 51
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 89 |
3 56
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 90 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 91 |
77
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
| 92 |
90 91
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 93 |
92
|
exp31 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) ) |
| 94 |
89 54 93
|
rexlimd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
| 95 |
94
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
| 96 |
88 95
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 97 |
87 96
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
| 98 |
97
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) ) |
| 99 |
85 98
|
impbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
| 100 |
2 99
|
rabbida3 |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
| 101 |
13 100
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
| 102 |
10
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } ) |
| 103 |
102
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } ) |
| 104 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 105 |
103 104 51
|
3syl |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 107 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
| 108 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
| 109 |
54 108
|
nfrabw |
⊢ Ⅎ 𝑛 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } |
| 110 |
10 109
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐷 |
| 111 |
107 110
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ 𝐷 |
| 112 |
3 111
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 113 |
|
nfv |
⊢ Ⅎ 𝑛 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) |
| 114 |
1 14 60
|
nf3an |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 115 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ 𝑍 ) |
| 116 |
115 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ℤ ) |
| 117 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑍 ∈ V ) |
| 118 |
5 115
|
uzssd2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 119 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ V ) |
| 120 |
70
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 121 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 122 |
115 16
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 123 |
121 122 120 7
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ 𝑊 ) |
| 124 |
120 123 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 125 |
114 116 64 117 117 118 118 119 124
|
climfveqmpt3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 126 |
125
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
| 128 |
112 113 127
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 129 |
106 128
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 130 |
129
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) |
| 131 |
2 101 130
|
mpteq12da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) ) |
| 132 |
41
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 133 |
132
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 134 |
1 133
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 135 |
134
|
eqcomd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 136 |
135
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
| 137 |
2 45 136
|
rabbida2 |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
| 138 |
133
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 139 |
1 138
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 141 |
2 137 140
|
mpteq12df |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 142 |
12 131 141
|
3eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 143 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 144 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 145 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 146 |
144 145
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 147 |
1 9 21
|
fmptdf |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 148 |
|
eqid |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 149 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 150 |
143 146 4 5 8 147 148 149
|
smflim2 |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 151 |
142 150
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |