Step |
Hyp |
Ref |
Expression |
1 |
|
smflimmpt.p |
⊢ Ⅎ 𝑚 𝜑 |
2 |
|
smflimmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
3 |
|
smflimmpt.n |
⊢ Ⅎ 𝑛 𝜑 |
4 |
|
smflimmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
smflimmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
smflimmpt.a |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐴 ∈ 𝑉 ) |
7 |
|
smflimmpt.b |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
8 |
|
smflimmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
9 |
|
smflimmpt.l |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
10 |
|
smflimmpt.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } |
11 |
|
smflimmpt.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
13 |
10
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } ) |
14 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
15 |
1 14
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
16 |
5
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
17 |
16
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
18 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
19 |
6
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
20 |
18 17 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
22 |
21
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
23 |
17 20 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
24 |
23
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
25 |
|
nfv |
⊢ Ⅎ 𝑥 𝑛 ∈ 𝑍 |
26 |
2 25
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
27 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) |
28 |
26 27
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
29 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) |
30 |
17
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ 𝑍 ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
32 |
29 30 31 7
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
34 |
28 32 33
|
fnmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
35 |
34
|
fndmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
36 |
24 35
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐴 = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
37 |
15 36
|
iineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
38 |
3 37
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
40 |
39 19 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
41 |
40
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
42 |
41
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
43 |
18 17 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
44 |
15 43
|
iineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
45 |
3 44
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
46 |
38 45
|
eqtr4d |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
47 |
46
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ↔ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
48 |
47
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
49 |
48
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
50 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
51 |
50
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
53 |
52
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
54 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ |
55 |
3 54
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
56 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
57 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
59 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
60 |
58 59
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
61 |
15 60
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
62 |
5
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
63 |
62
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ℤ ) |
64 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
65 |
5
|
fvexi |
⊢ 𝑍 ∈ V |
66 |
65
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑍 ∈ V ) |
67 |
5
|
uzssd3 |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
68 |
67
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
69 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ V ) |
70 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
71 |
70
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
72 |
18
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
73 |
17
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
74 |
72 73 71 7
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ 𝑊 ) |
75 |
33
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
76 |
71 74 75
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
77 |
61 63 64 66 66 68 68 69 76
|
climeldmeqmpt3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
78 |
77
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
79 |
57 78
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
80 |
79
|
exp31 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
81 |
55 56 80
|
rexlimd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
82 |
81
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
83 |
53 82
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
84 |
49 83
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
85 |
84
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
86 |
47
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
87 |
86
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
88 |
87 51
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
89 |
3 56
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
90 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
91 |
77
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
92 |
90 91
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
93 |
92
|
exp31 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) ) |
94 |
89 54 93
|
rexlimd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
95 |
94
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
96 |
88 95
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
97 |
87 96
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) |
98 |
97
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ) ) |
99 |
85 98
|
impbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
100 |
2 99
|
rabbida3 |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
101 |
13 100
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
102 |
10
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } ) |
103 |
102
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } ) |
104 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
105 |
103 104 51
|
3syl |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
107 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
108 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
109 |
54 108
|
nfrabw |
⊢ Ⅎ 𝑛 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ } |
110 |
10 109
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐷 |
111 |
107 110
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ 𝐷 |
112 |
3 111
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
113 |
|
nfv |
⊢ Ⅎ 𝑛 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) |
114 |
1 14 60
|
nf3an |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
115 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ 𝑍 ) |
116 |
115 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ℤ ) |
117 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑍 ∈ V ) |
118 |
5 115
|
uzssd2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
119 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ V ) |
120 |
70
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
121 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
122 |
115 16
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
123 |
121 122 120 7
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ 𝑊 ) |
124 |
120 123 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
125 |
114 116 64 117 117 118 118 119 124
|
climfveqmpt3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
126 |
125
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
128 |
112 113 127
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
129 |
106 128
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
130 |
129
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) |
131 |
2 101 130
|
mpteq12da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) ) |
132 |
41
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
133 |
132
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
134 |
1 133
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
135 |
134
|
eqcomd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
136 |
135
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
137 |
2 45 136
|
rabbida2 |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
138 |
133
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) |
139 |
1 138
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
141 |
2 137 140
|
mpteq12df |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
142 |
12 131 141
|
3eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
143 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
144 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
145 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
146 |
144 145
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
147 |
1 9 21
|
fmptdf |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
148 |
|
eqid |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
149 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
150 |
143 146 4 5 8 147 148 149
|
smflim2 |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
151 |
142 150
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |