Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smfsuplem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smfsuplem1.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfsuplem1.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfsuplem1.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
6 |
|
smfsuplem1.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
7 |
|
smfsuplem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
8 |
|
smfsuplem1.h |
⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ 𝑆 ) |
9 |
|
smfsuplem1.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
11 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
12 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
13 |
10 11 12
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
14 |
13
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) Fn dom ( 𝐹 ‘ 𝑛 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐹 ‘ 𝑛 ) Fn dom ( 𝐹 ‘ 𝑛 ) ) |
16 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
17 |
5 16
|
eqsstri |
⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
18 |
|
iinss2 |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
19 |
17 18
|
sstrid |
⊢ ( 𝑛 ∈ 𝑍 → 𝐷 ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐷 ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
21 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ dom 𝐺 |
22 |
21
|
sseli |
⊢ ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) → 𝑥 ∈ dom 𝐺 ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom 𝐺 ) |
24 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
25 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
26 |
1 25
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
27 |
26 2
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
28 |
27
|
ne0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ≠ ∅ ) |
30 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
31 |
18
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
32 |
17
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
34 |
31 33
|
sseldd |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
35 |
34
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
36 |
30 35
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
37 |
5
|
rabeq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
38 |
37
|
simprbi |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
40 |
24 29 36 39
|
suprclrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
41 |
40 6
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℝ ) |
42 |
41
|
fdmd |
⊢ ( 𝜑 → dom 𝐺 = 𝐷 ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → dom 𝐺 = 𝐷 ) |
44 |
23 43
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ 𝐷 ) |
45 |
20 44
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
46 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
47 |
46
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* ) |
48 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
50 |
36
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
51 |
44 50
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
52 |
51
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
53 |
51
|
mnfltd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
54 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom 𝐺 ) |
55 |
41
|
ffdmd |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℝ ) |
56 |
55
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
57 |
54 56
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
59 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
60 |
|
an32 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) ) |
61 |
60
|
biimpi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) ) |
62 |
24 36 39
|
suprubrnmpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
63 |
61 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
64 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
65 |
64 40
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
67 |
63 66
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
68 |
44 67
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
69 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* ) |
70 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
72 |
41
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐷 ) |
73 |
|
elpreima |
⊢ ( 𝐺 Fn 𝐷 → ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
74 |
72 73
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
76 |
71 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) |
77 |
76
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
78 |
69 70 77
|
iocleubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
79 |
78
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
80 |
51 58 59 68 79
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
81 |
47 49 52 53 80
|
eliocd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
82 |
15 45 81
|
elpreimad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
83 |
82
|
ssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
84 |
|
inss1 |
⊢ ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) |
85 |
9 84
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
86 |
83 85
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
87 |
86
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
88 |
|
ssiin |
⊢ ( ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝑍 ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
89 |
87 88
|
sylibr |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ) |
90 |
21 41
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ 𝐷 ) |
91 |
89 90
|
ssind |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
92 |
|
iniin1 |
⊢ ( 𝑍 ≠ ∅ → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
93 |
28 92
|
syl |
⊢ ( 𝜑 → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
94 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐺 Fn 𝐷 ) |
95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
96 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑀 ∈ 𝑍 ) |
97 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑀 ) ) |
98 |
97
|
ineq1d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) |
99 |
98
|
eleq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ↔ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) ) |
100 |
95 96 99
|
eliind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) |
101 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
102 |
100 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
103 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → -∞ ∈ ℝ* ) |
104 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐴 ∈ ℝ* ) |
105 |
65 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
106 |
105
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
107 |
102 106
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
108 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
109 |
108 105
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
110 |
109
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) → -∞ < ( 𝐺 ‘ 𝑥 ) ) |
111 |
100 110
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → -∞ < ( 𝐺 ‘ 𝑥 ) ) |
112 |
102 65
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
113 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
114 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
115 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) |
116 |
114 115
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) |
117 |
113 116
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
118 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
119 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
120 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
121 |
120
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
122 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) → 𝑥 ∈ ( 𝐻 ‘ 𝑛 ) ) |
123 |
122
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( 𝐻 ‘ 𝑛 ) ) |
124 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
125 |
124
|
adantl |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
126 |
34
|
ancoms |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
127 |
125 126
|
syldan |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
128 |
127
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
129 |
123 128
|
elind |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
130 |
9
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
131 |
129 130
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
132 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* ) |
133 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
134 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
135 |
|
elpreima |
⊢ ( ( 𝐹 ‘ 𝑛 ) Fn dom ( 𝐹 ‘ 𝑛 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
136 |
14 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
137 |
136
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
138 |
134 137
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) |
139 |
138
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
140 |
132 133 139
|
iocleubd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
141 |
131 140
|
syld3an3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
142 |
118 119 121 141
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
143 |
142
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝑛 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) ) |
144 |
117 143
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
145 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑍 ≠ ∅ ) |
146 |
102 36
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
147 |
102 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
148 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
149 |
117 145 146 147 148
|
suprleubrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) ) |
150 |
144 149
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ≤ 𝐴 ) |
151 |
112 150
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
152 |
103 104 107 111 151
|
eliocd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
153 |
94 102 152
|
elpreimad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
154 |
153
|
ssd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ⊆ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
155 |
93 154
|
eqsstrd |
⊢ ( 𝜑 → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ⊆ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
156 |
91 155
|
eqssd |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) = ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
157 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
158 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
159 |
158
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑛 ) ∈ V |
160 |
159
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V |
161 |
160
|
a1i |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
162 |
28 161
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
163 |
157 162
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ∈ V ) |
164 |
5 163
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
165 |
2
|
uzct |
⊢ 𝑍 ≼ ω |
166 |
165
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
167 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) ∈ 𝑆 ) |
168 |
3 166 28 167
|
saliincl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∈ 𝑆 ) |
169 |
|
eqid |
⊢ ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) |
170 |
3 164 168 169
|
elrestd |
⊢ ( 𝜑 → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
171 |
156 170
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |