| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem1.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smfsuplem1.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smfsuplem1.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfsuplem1.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfsuplem1.d | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 6 |  | smfsuplem1.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 7 |  | smfsuplem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 8 |  | smfsuplem1.h | ⊢ ( 𝜑  →  𝐻 : 𝑍 ⟶ 𝑆 ) | 
						
							| 9 |  | smfsuplem1.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 11 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 12 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 13 | 10 11 12 | smff | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 14 | 13 | ffnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  Fn  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝐹 ‘ 𝑛 )  Fn  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 16 |  | ssrab2 | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 17 | 5 16 | eqsstri | ⊢ 𝐷  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 18 |  | iinss2 | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ⊆  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 19 | 17 18 | sstrid | ⊢ ( 𝑛  ∈  𝑍  →  𝐷  ⊆  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝐷  ⊆  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 21 |  | cnvimass | ⊢ ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  dom  𝐺 | 
						
							| 22 | 21 | sseli | ⊢ ( 𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝐷 ) | 
						
							| 25 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 26 | 1 25 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 27 | 26 2 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 28 | 27 | ne0d | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑍  ≠  ∅ ) | 
						
							| 30 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 31 | 18 | adantl | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ⊆  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 32 | 17 | sseli | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 34 | 31 33 | sseldd | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 35 | 34 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 36 | 30 35 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 37 | 5 | reqabi | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 𝑥  ∈  𝐷  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 40 | 24 29 36 39 | suprclrnmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 41 | 40 6 | fmptd | ⊢ ( 𝜑  →  𝐺 : 𝐷 ⟶ ℝ ) | 
						
							| 42 | 41 | fdmd | ⊢ ( 𝜑  →  dom  𝐺  =  𝐷 ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  dom  𝐺  =  𝐷 ) | 
						
							| 44 | 23 43 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 45 | 20 44 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 46 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  -∞  ∈  ℝ* ) | 
						
							| 48 | 7 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 50 | 36 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 51 | 44 50 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 52 | 51 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 53 | 51 | mnfltd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  -∞  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 54 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  dom  𝐺 ) | 
						
							| 55 | 41 | ffdmd | ⊢ ( 𝜑  →  𝐺 : dom  𝐺 ⟶ ℝ ) | 
						
							| 56 | 55 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 57 | 54 56 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 58 | 57 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 59 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 60 |  | an32 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐷 )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 ) ) | 
						
							| 61 | 60 | biimpi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 ) ) | 
						
							| 62 | 24 36 39 | suprubrnmpt | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 64 | 6 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 65 | 64 40 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐷 )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 67 | 63 66 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 68 | 44 67 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 69 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  -∞  ∈  ℝ* ) | 
						
							| 70 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 71 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 72 | 41 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐷 ) | 
						
							| 73 |  | elpreima | ⊢ ( 𝐺  Fn  𝐷  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ↔  ( 𝑥  ∈  𝐷  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ↔  ( 𝑥  ∈  𝐷  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ↔  ( 𝑥  ∈  𝐷  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) ) | 
						
							| 76 | 71 75 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝑥  ∈  𝐷  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 77 | 76 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) | 
						
							| 78 | 69 70 77 | iocleubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 79 | 78 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 80 | 51 58 59 68 79 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 81 | 47 49 52 53 80 | eliocd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) | 
						
							| 82 | 15 45 81 | elpreimad | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 83 | 82 | ssd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 84 |  | inss1 | ⊢ ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  ⊆  ( 𝐻 ‘ 𝑛 ) | 
						
							| 85 | 9 84 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  ⊆  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 86 | 83 85 | sstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 87 | 86 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 88 |  | ssiin | ⊢ ( ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝑍 ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 89 | 87 88 | sylibr | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 90 | 21 41 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  𝐷 ) | 
						
							| 91 | 89 90 | ssind | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ⊆  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 92 |  | iniin1 | ⊢ ( 𝑍  ≠  ∅  →  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  =  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 93 | 28 92 | syl | ⊢ ( 𝜑  →  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  =  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 94 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝐺  Fn  𝐷 ) | 
						
							| 95 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 96 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑀  ∈  𝑍 ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝐻 ‘ 𝑀 ) ) | 
						
							| 98 | 97 | ineq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  =  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 ) ) | 
						
							| 99 | 98 | eleq2d | ⊢ ( 𝑛  =  𝑀  →  ( 𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  ↔  𝑥  ∈  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 ) ) ) | 
						
							| 100 | 95 96 99 | eliind | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 ) ) | 
						
							| 101 |  | elinel2 | ⊢ ( 𝑥  ∈  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 102 | 100 101 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 103 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 104 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 105 | 65 40 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 106 | 105 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 107 | 102 106 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 108 | 101 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 109 | 108 105 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 110 | 109 | mnfltd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑀 )  ∩  𝐷 ) )  →  -∞  <  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 111 | 100 110 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  -∞  <  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 112 | 102 65 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( 𝐺 ‘ 𝑥 )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 113 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 114 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 115 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) | 
						
							| 116 | 114 115 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) | 
						
							| 117 | 113 116 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 118 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 119 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 120 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 121 | 120 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 122 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  →  𝑥  ∈  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 123 | 122 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 124 |  | elinel2 | ⊢ ( 𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 126 | 34 | ancoms | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 127 | 125 126 | syldan | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 128 | 127 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 129 | 123 128 | elind | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 130 | 9 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( 𝐻 ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 131 | 129 130 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 132 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  -∞  ∈  ℝ* ) | 
						
							| 133 | 48 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 134 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 135 |  | elpreima | ⊢ ( ( 𝐹 ‘ 𝑛 )  Fn  dom  ( 𝐹 ‘ 𝑛 )  →  ( 𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  ↔  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) ) | 
						
							| 136 | 14 135 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  ↔  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) ) | 
						
							| 137 | 136 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  ↔  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) ) | 
						
							| 138 | 134 137 | mpbid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 139 | 138 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) | 
						
							| 140 | 132 133 139 | iocleubd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 141 | 131 140 | syld3an3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 142 | 118 119 121 141 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 143 | 142 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( 𝑛  ∈  𝑍  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) ) | 
						
							| 144 | 117 143 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 145 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑍  ≠  ∅ ) | 
						
							| 146 | 102 36 | syldanl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 147 | 102 38 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 148 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 149 | 117 145 146 147 148 | suprleubrnmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ≤  𝐴  ↔  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝐴 ) ) | 
						
							| 150 | 144 149 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ≤  𝐴 ) | 
						
							| 151 | 112 150 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  𝐴 ) | 
						
							| 152 | 103 104 107 111 151 | eliocd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( -∞ (,] 𝐴 ) ) | 
						
							| 153 | 94 102 152 | elpreimad | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑥  ∈  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 154 | 153 | ssd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  ⊆  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 155 | 93 154 | eqsstrd | ⊢ ( 𝜑  →  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  ⊆  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 156 | 91 155 | eqssd | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  =  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 157 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 158 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 159 | 158 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 160 | 159 | rgenw | ⊢ ∀ 𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 161 | 160 | a1i | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 162 | 28 161 | iinexd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 163 | 157 162 | rabexd | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ∈  V ) | 
						
							| 164 | 5 163 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 165 | 2 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 166 | 165 | a1i | ⊢ ( 𝜑  →  𝑍  ≼  ω ) | 
						
							| 167 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 168 | 3 166 28 167 | saliincl | ⊢ ( 𝜑  →  ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 169 |  | eqid | ⊢ ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  =  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 ) | 
						
							| 170 | 3 164 168 169 | elrestd | ⊢ ( 𝜑  →  ( ∩  𝑛  ∈  𝑍 ( 𝐻 ‘ 𝑛 )  ∩  𝐷 )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 171 | 156 170 | eqeltrd | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) |