Metamath Proof Explorer


Theorem smfsuplem1

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsuplem1.m ( 𝜑𝑀 ∈ ℤ )
smfsuplem1.z 𝑍 = ( ℤ𝑀 )
smfsuplem1.s ( 𝜑𝑆 ∈ SAlg )
smfsuplem1.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfsuplem1.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
smfsuplem1.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
smfsuplem1.a ( 𝜑𝐴 ∈ ℝ )
smfsuplem1.h ( 𝜑𝐻 : 𝑍𝑆 )
smfsuplem1.i ( ( 𝜑𝑛𝑍 ) → ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻𝑛 ) ∩ dom ( 𝐹𝑛 ) ) )
Assertion smfsuplem1 ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfsuplem1.m ( 𝜑𝑀 ∈ ℤ )
2 smfsuplem1.z 𝑍 = ( ℤ𝑀 )
3 smfsuplem1.s ( 𝜑𝑆 ∈ SAlg )
4 smfsuplem1.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
5 smfsuplem1.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
6 smfsuplem1.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
7 smfsuplem1.a ( 𝜑𝐴 ∈ ℝ )
8 smfsuplem1.h ( 𝜑𝐻 : 𝑍𝑆 )
9 smfsuplem1.i ( ( 𝜑𝑛𝑍 ) → ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻𝑛 ) ∩ dom ( 𝐹𝑛 ) ) )
10 3 adantr ( ( 𝜑𝑛𝑍 ) → 𝑆 ∈ SAlg )
11 4 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) )
12 eqid dom ( 𝐹𝑛 ) = dom ( 𝐹𝑛 )
13 10 11 12 smff ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
14 13 ffnd ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) Fn dom ( 𝐹𝑛 ) )
15 14 adantr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐹𝑛 ) Fn dom ( 𝐹𝑛 ) )
16 ssrab2 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ 𝑛𝑍 dom ( 𝐹𝑛 )
17 5 16 eqsstri 𝐷 𝑛𝑍 dom ( 𝐹𝑛 )
18 iinss2 ( 𝑛𝑍 𝑛𝑍 dom ( 𝐹𝑛 ) ⊆ dom ( 𝐹𝑛 ) )
19 17 18 sstrid ( 𝑛𝑍𝐷 ⊆ dom ( 𝐹𝑛 ) )
20 19 ad2antlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐷 ⊆ dom ( 𝐹𝑛 ) )
21 cnvimass ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ dom 𝐺
22 21 sseli ( 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) → 𝑥 ∈ dom 𝐺 )
23 22 adantl ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom 𝐺 )
24 nfv 𝑛 ( 𝜑𝑥𝐷 )
25 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
26 1 25 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
27 26 2 eleqtrrdi ( 𝜑𝑀𝑍 )
28 27 ne0d ( 𝜑𝑍 ≠ ∅ )
29 28 adantr ( ( 𝜑𝑥𝐷 ) → 𝑍 ≠ ∅ )
30 13 adantlr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
31 18 adantl ( ( 𝑥𝐷𝑛𝑍 ) → 𝑛𝑍 dom ( 𝐹𝑛 ) ⊆ dom ( 𝐹𝑛 ) )
32 17 sseli ( 𝑥𝐷𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
33 32 adantr ( ( 𝑥𝐷𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
34 31 33 sseldd ( ( 𝑥𝐷𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
35 34 adantll ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
36 30 35 ffvelrnd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
37 5 rabeq2i ( 𝑥𝐷 ↔ ( 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) )
38 37 simprbi ( 𝑥𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
39 38 adantl ( ( 𝜑𝑥𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
40 24 29 36 39 suprclrnmpt ( ( 𝜑𝑥𝐷 ) → sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ )
41 40 6 fmptd ( 𝜑𝐺 : 𝐷 ⟶ ℝ )
42 41 fdmd ( 𝜑 → dom 𝐺 = 𝐷 )
43 42 ad2antrr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → dom 𝐺 = 𝐷 )
44 23 43 eleqtrd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥𝐷 )
45 20 44 sseldd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
46 mnfxr -∞ ∈ ℝ*
47 46 a1i ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* )
48 7 rexrd ( 𝜑𝐴 ∈ ℝ* )
49 48 ad2antrr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* )
50 36 an32s ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥𝐷 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
51 44 50 syldan ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
52 51 rexrd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
53 51 mnfltd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ < ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
54 22 adantl ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom 𝐺 )
55 41 ffdmd ( 𝜑𝐺 : dom 𝐺 ⟶ ℝ )
56 55 ffvelrnda ( ( 𝜑𝑥 ∈ dom 𝐺 ) → ( 𝐺𝑥 ) ∈ ℝ )
57 54 56 syldan ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺𝑥 ) ∈ ℝ )
58 57 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺𝑥 ) ∈ ℝ )
59 7 ad2antrr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ )
60 an32 ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥𝐷 ) ↔ ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) )
61 60 biimpi ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥𝐷 ) → ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) )
62 24 36 39 suprubrnmpt ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
63 61 62 syl ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥𝐷 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
64 6 a1i ( 𝜑𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) )
65 64 40 fvmpt2d ( ( 𝜑𝑥𝐷 ) → ( 𝐺𝑥 ) = sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
66 65 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥𝐷 ) → ( 𝐺𝑥 ) = sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
67 63 66 breqtrrd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥𝐷 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ ( 𝐺𝑥 ) )
68 44 67 syldan ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ ( 𝐺𝑥 ) )
69 46 a1i ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* )
70 48 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* )
71 simpr ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) )
72 41 ffnd ( 𝜑𝐺 Fn 𝐷 )
73 elpreima ( 𝐺 Fn 𝐷 → ( 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥𝐷 ∧ ( 𝐺𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) )
74 72 73 syl ( 𝜑 → ( 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥𝐷 ∧ ( 𝐺𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) )
75 74 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥𝐷 ∧ ( 𝐺𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) )
76 71 75 mpbid ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥𝐷 ∧ ( 𝐺𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) )
77 76 simprd ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺𝑥 ) ∈ ( -∞ (,] 𝐴 ) )
78 69 70 77 iocleubd ( ( 𝜑𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺𝑥 ) ≤ 𝐴 )
79 78 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺𝑥 ) ≤ 𝐴 )
80 51 58 59 68 79 letrd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 )
81 47 49 52 53 80 eliocd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) )
82 15 45 81 elpreimad ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) )
83 82 ssd ( ( 𝜑𝑛𝑍 ) → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) )
84 inss1 ( ( 𝐻𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ⊆ ( 𝐻𝑛 )
85 9 84 eqsstrdi ( ( 𝜑𝑛𝑍 ) → ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻𝑛 ) )
86 83 85 sstrd ( ( 𝜑𝑛𝑍 ) → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻𝑛 ) )
87 86 ralrimiva ( 𝜑 → ∀ 𝑛𝑍 ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻𝑛 ) )
88 ssiin ( ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ 𝑛𝑍 ( 𝐻𝑛 ) ↔ ∀ 𝑛𝑍 ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻𝑛 ) )
89 87 88 sylibr ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ 𝑛𝑍 ( 𝐻𝑛 ) )
90 21 41 fssdm ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ 𝐷 )
91 89 90 ssind ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) )
92 iniin1 ( 𝑍 ≠ ∅ → ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) = 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) )
93 28 92 syl ( 𝜑 → ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) = 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) )
94 72 adantr ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝐺 Fn 𝐷 )
95 simpr ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) )
96 27 adantr ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑀𝑍 )
97 fveq2 ( 𝑛 = 𝑀 → ( 𝐻𝑛 ) = ( 𝐻𝑀 ) )
98 97 ineq1d ( 𝑛 = 𝑀 → ( ( 𝐻𝑛 ) ∩ 𝐷 ) = ( ( 𝐻𝑀 ) ∩ 𝐷 ) )
99 98 eleq2d ( 𝑛 = 𝑀 → ( 𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ↔ 𝑥 ∈ ( ( 𝐻𝑀 ) ∩ 𝐷 ) ) )
100 95 96 99 eliind ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐻𝑀 ) ∩ 𝐷 ) )
101 elinel2 ( 𝑥 ∈ ( ( 𝐻𝑀 ) ∩ 𝐷 ) → 𝑥𝐷 )
102 100 101 syl ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥𝐷 )
103 46 a1i ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → -∞ ∈ ℝ* )
104 48 adantr ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝐴 ∈ ℝ* )
105 65 40 eqeltrd ( ( 𝜑𝑥𝐷 ) → ( 𝐺𝑥 ) ∈ ℝ )
106 105 rexrd ( ( 𝜑𝑥𝐷 ) → ( 𝐺𝑥 ) ∈ ℝ* )
107 102 106 syldan ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( 𝐺𝑥 ) ∈ ℝ* )
108 101 adantl ( ( 𝜑𝑥 ∈ ( ( 𝐻𝑀 ) ∩ 𝐷 ) ) → 𝑥𝐷 )
109 108 105 syldan ( ( 𝜑𝑥 ∈ ( ( 𝐻𝑀 ) ∩ 𝐷 ) ) → ( 𝐺𝑥 ) ∈ ℝ )
110 109 mnfltd ( ( 𝜑𝑥 ∈ ( ( 𝐻𝑀 ) ∩ 𝐷 ) ) → -∞ < ( 𝐺𝑥 ) )
111 100 110 syldan ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → -∞ < ( 𝐺𝑥 ) )
112 102 65 syldan ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( 𝐺𝑥 ) = sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
113 nfv 𝑛 𝜑
114 nfcv 𝑛 𝑥
115 nfii1 𝑛 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 )
116 114 115 nfel 𝑛 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 )
117 113 116 nfan 𝑛 ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) )
118 simpll ( ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛𝑍 ) → 𝜑 )
119 simpr ( ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛𝑍 ) → 𝑛𝑍 )
120 eliinid ( ( 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) )
121 120 adantll ( ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) )
122 elinel1 ( 𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) → 𝑥 ∈ ( 𝐻𝑛 ) )
123 122 3ad2ant3 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( 𝐻𝑛 ) )
124 elinel2 ( 𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) → 𝑥𝐷 )
125 124 adantl ( ( 𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥𝐷 )
126 34 ancoms ( ( 𝑛𝑍𝑥𝐷 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
127 125 126 syldan ( ( 𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
128 127 3adant1 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
129 123 128 elind ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ∩ dom ( 𝐹𝑛 ) ) )
130 9 3adant3 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻𝑛 ) ∩ dom ( 𝐹𝑛 ) ) )
131 129 130 eleqtrrd ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) )
132 46 a1i ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* )
133 48 3ad2ant1 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* )
134 simp3 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) )
135 elpreima ( ( 𝐹𝑛 ) Fn dom ( 𝐹𝑛 ) → ( 𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹𝑛 ) ∧ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) )
136 14 135 syl ( ( 𝜑𝑛𝑍 ) → ( 𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹𝑛 ) ∧ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) )
137 136 3adant3 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹𝑛 ) ∧ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) )
138 134 137 mpbid ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ dom ( 𝐹𝑛 ) ∧ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) )
139 138 simprd ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) )
140 132 133 139 iocleubd ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 )
141 131 140 syld3an3 ( ( 𝜑𝑛𝑍𝑥 ∈ ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 )
142 118 119 121 141 syl3anc ( ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 )
143 142 ex ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( 𝑛𝑍 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) )
144 117 143 ralrimi ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 )
145 28 adantr ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑍 ≠ ∅ )
146 102 36 syldanl ( ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
147 102 38 syl ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
148 7 adantr ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝐴 ∈ ℝ )
149 117 145 146 147 148 suprleubrnmpt ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) )
150 144 149 mpbird ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ≤ 𝐴 )
151 112 150 eqbrtrd ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( 𝐺𝑥 ) ≤ 𝐴 )
152 103 104 107 111 151 eliocd ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → ( 𝐺𝑥 ) ∈ ( -∞ (,] 𝐴 ) )
153 94 102 152 elpreimad ( ( 𝜑𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) )
154 153 ssd ( 𝜑 𝑛𝑍 ( ( 𝐻𝑛 ) ∩ 𝐷 ) ⊆ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) )
155 93 154 eqsstrd ( 𝜑 → ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) ⊆ ( 𝐺 “ ( -∞ (,] 𝐴 ) ) )
156 91 155 eqssd ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) = ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) )
157 eqid { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
158 fvex ( 𝐹𝑛 ) ∈ V
159 158 dmex dom ( 𝐹𝑛 ) ∈ V
160 159 rgenw 𝑛𝑍 dom ( 𝐹𝑛 ) ∈ V
161 160 a1i ( 𝜑 → ∀ 𝑛𝑍 dom ( 𝐹𝑛 ) ∈ V )
162 28 161 iinexd ( 𝜑 𝑛𝑍 dom ( 𝐹𝑛 ) ∈ V )
163 157 162 rabexd ( 𝜑 → { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ∈ V )
164 5 163 eqeltrid ( 𝜑𝐷 ∈ V )
165 2 uzct 𝑍 ≼ ω
166 165 a1i ( 𝜑𝑍 ≼ ω )
167 8 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐻𝑛 ) ∈ 𝑆 )
168 3 166 28 167 saliincl ( 𝜑 𝑛𝑍 ( 𝐻𝑛 ) ∈ 𝑆 )
169 eqid ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) = ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 )
170 3 164 168 169 elrestd ( 𝜑 → ( 𝑛𝑍 ( 𝐻𝑛 ) ∩ 𝐷 ) ∈ ( 𝑆t 𝐷 ) )
171 156 170 eqeltrd ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) )