| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfsuplem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
smfsuplem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smfsuplem1.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smfsuplem1.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smfsuplem1.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
| 6 |
|
smfsuplem1.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 7 |
|
smfsuplem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 8 |
|
smfsuplem1.h |
⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ 𝑆 ) |
| 9 |
|
smfsuplem1.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 11 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 12 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
| 13 |
10 11 12
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 14 |
13
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) Fn dom ( 𝐹 ‘ 𝑛 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐹 ‘ 𝑛 ) Fn dom ( 𝐹 ‘ 𝑛 ) ) |
| 16 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 17 |
5 16
|
eqsstri |
⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 18 |
|
iinss2 |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
| 19 |
17 18
|
sstrid |
⊢ ( 𝑛 ∈ 𝑍 → 𝐷 ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
| 20 |
19
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐷 ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
| 21 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ dom 𝐺 |
| 22 |
21
|
sseli |
⊢ ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) → 𝑥 ∈ dom 𝐺 ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom 𝐺 ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 25 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 27 |
26 2
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 28 |
27
|
ne0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ≠ ∅ ) |
| 30 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 31 |
18
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
| 32 |
17
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 34 |
31 33
|
sseldd |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 35 |
34
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 36 |
30 35
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 37 |
5
|
reqabi |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 38 |
37
|
simprbi |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 40 |
24 29 36 39
|
suprclrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 41 |
40 6
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℝ ) |
| 42 |
41
|
fdmd |
⊢ ( 𝜑 → dom 𝐺 = 𝐷 ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → dom 𝐺 = 𝐷 ) |
| 44 |
23 43
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ 𝐷 ) |
| 45 |
20 44
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 46 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 47 |
46
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* ) |
| 48 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
| 50 |
36
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 51 |
44 50
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 52 |
51
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
| 53 |
51
|
mnfltd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 54 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ dom 𝐺 ) |
| 55 |
41
|
ffdmd |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℝ ) |
| 56 |
55
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 57 |
54 56
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 59 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
| 60 |
|
an32 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) ) |
| 61 |
60
|
biimpi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) ) |
| 62 |
24 36 39
|
suprubrnmpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 64 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 65 |
64 40
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 66 |
65
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 67 |
63 66
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 68 |
44 67
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 69 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* ) |
| 70 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
| 72 |
41
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐷 ) |
| 73 |
|
elpreima |
⊢ ( 𝐺 Fn 𝐷 → ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
| 74 |
72 73
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
| 76 |
71 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ 𝐷 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) |
| 77 |
76
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
| 78 |
69 70 77
|
iocleubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
| 79 |
78
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
| 80 |
51 58 59 68 79
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
| 81 |
47 49 52 53 80
|
eliocd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
| 82 |
15 45 81
|
elpreimad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
| 83 |
82
|
ssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
| 84 |
|
inss1 |
⊢ ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) |
| 85 |
9 84
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
| 86 |
83 85
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
| 87 |
86
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
| 88 |
|
ssiin |
⊢ ( ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝑍 ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( 𝐻 ‘ 𝑛 ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ) |
| 90 |
21 41
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ 𝐷 ) |
| 91 |
89 90
|
ssind |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ⊆ ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 92 |
|
iniin1 |
⊢ ( 𝑍 ≠ ∅ → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 93 |
28 92
|
syl |
⊢ ( 𝜑 → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 94 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐺 Fn 𝐷 ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 96 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑀 ∈ 𝑍 ) |
| 97 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑀 ) ) |
| 98 |
97
|
ineq1d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) |
| 99 |
98
|
eleq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ↔ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) ) |
| 100 |
95 96 99
|
eliind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) |
| 101 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 102 |
100 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
| 103 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → -∞ ∈ ℝ* ) |
| 104 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐴 ∈ ℝ* ) |
| 105 |
65 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 106 |
105
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 107 |
102 106
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 108 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
| 109 |
108 105
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 110 |
109
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑀 ) ∩ 𝐷 ) ) → -∞ < ( 𝐺 ‘ 𝑥 ) ) |
| 111 |
100 110
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → -∞ < ( 𝐺 ‘ 𝑥 ) ) |
| 112 |
102 65
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 113 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 114 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
| 115 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) |
| 116 |
114 115
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) |
| 117 |
113 116
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 118 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
| 119 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 120 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 121 |
120
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 122 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) → 𝑥 ∈ ( 𝐻 ‘ 𝑛 ) ) |
| 123 |
122
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( 𝐻 ‘ 𝑛 ) ) |
| 124 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
| 126 |
34
|
ancoms |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 127 |
125 126
|
syldan |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 128 |
127
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 129 |
123 128
|
elind |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
| 130 |
9
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐻 ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
| 131 |
129 130
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
| 132 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → -∞ ∈ ℝ* ) |
| 133 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → 𝐴 ∈ ℝ* ) |
| 134 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) |
| 135 |
|
elpreima |
⊢ ( ( 𝐹 ‘ 𝑛 ) Fn dom ( 𝐹 ‘ 𝑛 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
| 136 |
14 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
| 137 |
136
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) ) |
| 138 |
134 137
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) ) |
| 139 |
138
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
| 140 |
132 133 139
|
iocleubd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
| 141 |
131 140
|
syld3an3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
| 142 |
118 119 121 141
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
| 143 |
142
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝑛 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) ) |
| 144 |
117 143
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) |
| 145 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑍 ≠ ∅ ) |
| 146 |
102 36
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 147 |
102 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 148 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
| 149 |
117 145 146 147 148
|
suprleubrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝐴 ) ) |
| 150 |
144 149
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ≤ 𝐴 ) |
| 151 |
112 150
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
| 152 |
103 104 107 111 151
|
eliocd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐴 ) ) |
| 153 |
94 102 152
|
elpreimad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
| 154 |
153
|
ssd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ⊆ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
| 155 |
93 154
|
eqsstrd |
⊢ ( 𝜑 → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ⊆ ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ) |
| 156 |
91 155
|
eqssd |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) = ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ) |
| 157 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
| 158 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 159 |
158
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑛 ) ∈ V |
| 160 |
159
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V |
| 161 |
160
|
a1i |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
| 162 |
28 161
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
| 163 |
157 162
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ∈ V ) |
| 164 |
5 163
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 165 |
2
|
uzct |
⊢ 𝑍 ≼ ω |
| 166 |
165
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
| 167 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) ∈ 𝑆 ) |
| 168 |
3 166 28 167
|
saliincl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∈ 𝑆 ) |
| 169 |
|
eqid |
⊢ ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) = ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) |
| 170 |
3 164 168 169
|
elrestd |
⊢ ( 𝜑 → ( ∩ 𝑛 ∈ 𝑍 ( 𝐻 ‘ 𝑛 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 171 |
156 170
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |