Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem1.m |
|- ( ph -> M e. ZZ ) |
2 |
|
smfsuplem1.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
smfsuplem1.s |
|- ( ph -> S e. SAlg ) |
4 |
|
smfsuplem1.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
5 |
|
smfsuplem1.d |
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
6 |
|
smfsuplem1.g |
|- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
7 |
|
smfsuplem1.a |
|- ( ph -> A e. RR ) |
8 |
|
smfsuplem1.h |
|- ( ph -> H : Z --> S ) |
9 |
|
smfsuplem1.i |
|- ( ( ph /\ n e. Z ) -> ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) |
10 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
11 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
12 |
|
eqid |
|- dom ( F ` n ) = dom ( F ` n ) |
13 |
10 11 12
|
smff |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
14 |
13
|
ffnd |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) Fn dom ( F ` n ) ) |
15 |
14
|
adantr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( F ` n ) Fn dom ( F ` n ) ) |
16 |
|
ssrab2 |
|- { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } C_ |^|_ n e. Z dom ( F ` n ) |
17 |
5 16
|
eqsstri |
|- D C_ |^|_ n e. Z dom ( F ` n ) |
18 |
|
iinss2 |
|- ( n e. Z -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) |
19 |
17 18
|
sstrid |
|- ( n e. Z -> D C_ dom ( F ` n ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> D C_ dom ( F ` n ) ) |
21 |
|
cnvimass |
|- ( `' G " ( -oo (,] A ) ) C_ dom G |
22 |
21
|
sseli |
|- ( x e. ( `' G " ( -oo (,] A ) ) -> x e. dom G ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. dom G ) |
24 |
|
nfv |
|- F/ n ( ph /\ x e. D ) |
25 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
26 |
1 25
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
27 |
26 2
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
28 |
27
|
ne0d |
|- ( ph -> Z =/= (/) ) |
29 |
28
|
adantr |
|- ( ( ph /\ x e. D ) -> Z =/= (/) ) |
30 |
13
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
31 |
18
|
adantl |
|- ( ( x e. D /\ n e. Z ) -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) |
32 |
17
|
sseli |
|- ( x e. D -> x e. |^|_ n e. Z dom ( F ` n ) ) |
33 |
32
|
adantr |
|- ( ( x e. D /\ n e. Z ) -> x e. |^|_ n e. Z dom ( F ` n ) ) |
34 |
31 33
|
sseldd |
|- ( ( x e. D /\ n e. Z ) -> x e. dom ( F ` n ) ) |
35 |
34
|
adantll |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> x e. dom ( F ` n ) ) |
36 |
30 35
|
ffvelrnd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) |
37 |
5
|
rabeq2i |
|- ( x e. D <-> ( x e. |^|_ n e. Z dom ( F ` n ) /\ E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) |
38 |
37
|
simprbi |
|- ( x e. D -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) |
39 |
38
|
adantl |
|- ( ( ph /\ x e. D ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) |
40 |
24 29 36 39
|
suprclrnmpt |
|- ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
41 |
40 6
|
fmptd |
|- ( ph -> G : D --> RR ) |
42 |
41
|
fdmd |
|- ( ph -> dom G = D ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> dom G = D ) |
44 |
23 43
|
eleqtrd |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. D ) |
45 |
20 44
|
sseldd |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. dom ( F ` n ) ) |
46 |
|
mnfxr |
|- -oo e. RR* |
47 |
46
|
a1i |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> -oo e. RR* ) |
48 |
7
|
rexrd |
|- ( ph -> A e. RR* ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> A e. RR* ) |
50 |
36
|
an32s |
|- ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( F ` n ) ` x ) e. RR ) |
51 |
44 50
|
syldan |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. RR ) |
52 |
51
|
rexrd |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. RR* ) |
53 |
51
|
mnfltd |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> -oo < ( ( F ` n ) ` x ) ) |
54 |
22
|
adantl |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. dom G ) |
55 |
41
|
ffdmd |
|- ( ph -> G : dom G --> RR ) |
56 |
55
|
ffvelrnda |
|- ( ( ph /\ x e. dom G ) -> ( G ` x ) e. RR ) |
57 |
54 56
|
syldan |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) e. RR ) |
58 |
57
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) e. RR ) |
59 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> A e. RR ) |
60 |
|
an32 |
|- ( ( ( ph /\ n e. Z ) /\ x e. D ) <-> ( ( ph /\ x e. D ) /\ n e. Z ) ) |
61 |
60
|
biimpi |
|- ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( ph /\ x e. D ) /\ n e. Z ) ) |
62 |
24 36 39
|
suprubrnmpt |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) <_ sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
63 |
61 62
|
syl |
|- ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( F ` n ) ` x ) <_ sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
64 |
6
|
a1i |
|- ( ph -> G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) |
65 |
64 40
|
fvmpt2d |
|- ( ( ph /\ x e. D ) -> ( G ` x ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
66 |
65
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( G ` x ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
67 |
63 66
|
breqtrrd |
|- ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( F ` n ) ` x ) <_ ( G ` x ) ) |
68 |
44 67
|
syldan |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) <_ ( G ` x ) ) |
69 |
46
|
a1i |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> -oo e. RR* ) |
70 |
48
|
adantr |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> A e. RR* ) |
71 |
|
simpr |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. ( `' G " ( -oo (,] A ) ) ) |
72 |
41
|
ffnd |
|- ( ph -> G Fn D ) |
73 |
|
elpreima |
|- ( G Fn D -> ( x e. ( `' G " ( -oo (,] A ) ) <-> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) ) |
74 |
72 73
|
syl |
|- ( ph -> ( x e. ( `' G " ( -oo (,] A ) ) <-> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) ) |
75 |
74
|
adantr |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( x e. ( `' G " ( -oo (,] A ) ) <-> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) ) |
76 |
71 75
|
mpbid |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) |
77 |
76
|
simprd |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) e. ( -oo (,] A ) ) |
78 |
69 70 77
|
iocleubd |
|- ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) <_ A ) |
79 |
78
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) <_ A ) |
80 |
51 58 59 68 79
|
letrd |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) <_ A ) |
81 |
47 49 52 53 80
|
eliocd |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) |
82 |
15 45 81
|
elpreimad |
|- ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) |
83 |
82
|
ssd |
|- ( ( ph /\ n e. Z ) -> ( `' G " ( -oo (,] A ) ) C_ ( `' ( F ` n ) " ( -oo (,] A ) ) ) |
84 |
|
inss1 |
|- ( ( H ` n ) i^i dom ( F ` n ) ) C_ ( H ` n ) |
85 |
9 84
|
eqsstrdi |
|- ( ( ph /\ n e. Z ) -> ( `' ( F ` n ) " ( -oo (,] A ) ) C_ ( H ` n ) ) |
86 |
83 85
|
sstrd |
|- ( ( ph /\ n e. Z ) -> ( `' G " ( -oo (,] A ) ) C_ ( H ` n ) ) |
87 |
86
|
ralrimiva |
|- ( ph -> A. n e. Z ( `' G " ( -oo (,] A ) ) C_ ( H ` n ) ) |
88 |
|
ssiin |
|- ( ( `' G " ( -oo (,] A ) ) C_ |^|_ n e. Z ( H ` n ) <-> A. n e. Z ( `' G " ( -oo (,] A ) ) C_ ( H ` n ) ) |
89 |
87 88
|
sylibr |
|- ( ph -> ( `' G " ( -oo (,] A ) ) C_ |^|_ n e. Z ( H ` n ) ) |
90 |
21 41
|
fssdm |
|- ( ph -> ( `' G " ( -oo (,] A ) ) C_ D ) |
91 |
89 90
|
ssind |
|- ( ph -> ( `' G " ( -oo (,] A ) ) C_ ( |^|_ n e. Z ( H ` n ) i^i D ) ) |
92 |
|
iniin1 |
|- ( Z =/= (/) -> ( |^|_ n e. Z ( H ` n ) i^i D ) = |^|_ n e. Z ( ( H ` n ) i^i D ) ) |
93 |
28 92
|
syl |
|- ( ph -> ( |^|_ n e. Z ( H ` n ) i^i D ) = |^|_ n e. Z ( ( H ` n ) i^i D ) ) |
94 |
72
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> G Fn D ) |
95 |
|
simpr |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) |
96 |
27
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> M e. Z ) |
97 |
|
fveq2 |
|- ( n = M -> ( H ` n ) = ( H ` M ) ) |
98 |
97
|
ineq1d |
|- ( n = M -> ( ( H ` n ) i^i D ) = ( ( H ` M ) i^i D ) ) |
99 |
98
|
eleq2d |
|- ( n = M -> ( x e. ( ( H ` n ) i^i D ) <-> x e. ( ( H ` M ) i^i D ) ) ) |
100 |
95 96 99
|
eliind |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. ( ( H ` M ) i^i D ) ) |
101 |
|
elinel2 |
|- ( x e. ( ( H ` M ) i^i D ) -> x e. D ) |
102 |
100 101
|
syl |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. D ) |
103 |
46
|
a1i |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> -oo e. RR* ) |
104 |
48
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> A e. RR* ) |
105 |
65 40
|
eqeltrd |
|- ( ( ph /\ x e. D ) -> ( G ` x ) e. RR ) |
106 |
105
|
rexrd |
|- ( ( ph /\ x e. D ) -> ( G ` x ) e. RR* ) |
107 |
102 106
|
syldan |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) e. RR* ) |
108 |
101
|
adantl |
|- ( ( ph /\ x e. ( ( H ` M ) i^i D ) ) -> x e. D ) |
109 |
108 105
|
syldan |
|- ( ( ph /\ x e. ( ( H ` M ) i^i D ) ) -> ( G ` x ) e. RR ) |
110 |
109
|
mnfltd |
|- ( ( ph /\ x e. ( ( H ` M ) i^i D ) ) -> -oo < ( G ` x ) ) |
111 |
100 110
|
syldan |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> -oo < ( G ` x ) ) |
112 |
102 65
|
syldan |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
113 |
|
nfv |
|- F/ n ph |
114 |
|
nfcv |
|- F/_ n x |
115 |
|
nfii1 |
|- F/_ n |^|_ n e. Z ( ( H ` n ) i^i D ) |
116 |
114 115
|
nfel |
|- F/ n x e. |^|_ n e. Z ( ( H ` n ) i^i D ) |
117 |
113 116
|
nfan |
|- F/ n ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) |
118 |
|
simpll |
|- ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> ph ) |
119 |
|
simpr |
|- ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> n e. Z ) |
120 |
|
eliinid |
|- ( ( x e. |^|_ n e. Z ( ( H ` n ) i^i D ) /\ n e. Z ) -> x e. ( ( H ` n ) i^i D ) ) |
121 |
120
|
adantll |
|- ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> x e. ( ( H ` n ) i^i D ) ) |
122 |
|
elinel1 |
|- ( x e. ( ( H ` n ) i^i D ) -> x e. ( H ` n ) ) |
123 |
122
|
3ad2ant3 |
|- ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. ( H ` n ) ) |
124 |
|
elinel2 |
|- ( x e. ( ( H ` n ) i^i D ) -> x e. D ) |
125 |
124
|
adantl |
|- ( ( n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. D ) |
126 |
34
|
ancoms |
|- ( ( n e. Z /\ x e. D ) -> x e. dom ( F ` n ) ) |
127 |
125 126
|
syldan |
|- ( ( n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. dom ( F ` n ) ) |
128 |
127
|
3adant1 |
|- ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. dom ( F ` n ) ) |
129 |
123 128
|
elind |
|- ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. ( ( H ` n ) i^i dom ( F ` n ) ) ) |
130 |
9
|
3adant3 |
|- ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) |
131 |
129 130
|
eleqtrrd |
|- ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) |
132 |
46
|
a1i |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> -oo e. RR* ) |
133 |
48
|
3ad2ant1 |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> A e. RR* ) |
134 |
|
simp3 |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) |
135 |
|
elpreima |
|- ( ( F ` n ) Fn dom ( F ` n ) -> ( x e. ( `' ( F ` n ) " ( -oo (,] A ) ) <-> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) ) |
136 |
14 135
|
syl |
|- ( ( ph /\ n e. Z ) -> ( x e. ( `' ( F ` n ) " ( -oo (,] A ) ) <-> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) ) |
137 |
136
|
3adant3 |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( x e. ( `' ( F ` n ) " ( -oo (,] A ) ) <-> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) ) |
138 |
134 137
|
mpbid |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) |
139 |
138
|
simprd |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) |
140 |
132 133 139
|
iocleubd |
|- ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) <_ A ) |
141 |
131 140
|
syld3an3 |
|- ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> ( ( F ` n ) ` x ) <_ A ) |
142 |
118 119 121 141
|
syl3anc |
|- ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> ( ( F ` n ) ` x ) <_ A ) |
143 |
142
|
ex |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( n e. Z -> ( ( F ` n ) ` x ) <_ A ) ) |
144 |
117 143
|
ralrimi |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> A. n e. Z ( ( F ` n ) ` x ) <_ A ) |
145 |
28
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> Z =/= (/) ) |
146 |
102 36
|
syldanl |
|- ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) |
147 |
102 38
|
syl |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) |
148 |
7
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> A e. RR ) |
149 |
117 145 146 147 148
|
suprleubrnmpt |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) <_ A <-> A. n e. Z ( ( F ` n ) ` x ) <_ A ) ) |
150 |
144 149
|
mpbird |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) <_ A ) |
151 |
112 150
|
eqbrtrd |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) <_ A ) |
152 |
103 104 107 111 151
|
eliocd |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) e. ( -oo (,] A ) ) |
153 |
94 102 152
|
elpreimad |
|- ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. ( `' G " ( -oo (,] A ) ) ) |
154 |
153
|
ssd |
|- ( ph -> |^|_ n e. Z ( ( H ` n ) i^i D ) C_ ( `' G " ( -oo (,] A ) ) ) |
155 |
93 154
|
eqsstrd |
|- ( ph -> ( |^|_ n e. Z ( H ` n ) i^i D ) C_ ( `' G " ( -oo (,] A ) ) ) |
156 |
91 155
|
eqssd |
|- ( ph -> ( `' G " ( -oo (,] A ) ) = ( |^|_ n e. Z ( H ` n ) i^i D ) ) |
157 |
|
eqid |
|- { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
158 |
|
fvex |
|- ( F ` n ) e. _V |
159 |
158
|
dmex |
|- dom ( F ` n ) e. _V |
160 |
159
|
rgenw |
|- A. n e. Z dom ( F ` n ) e. _V |
161 |
160
|
a1i |
|- ( ph -> A. n e. Z dom ( F ` n ) e. _V ) |
162 |
28 161
|
iinexd |
|- ( ph -> |^|_ n e. Z dom ( F ` n ) e. _V ) |
163 |
157 162
|
rabexd |
|- ( ph -> { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } e. _V ) |
164 |
5 163
|
eqeltrid |
|- ( ph -> D e. _V ) |
165 |
2
|
uzct |
|- Z ~<_ _om |
166 |
165
|
a1i |
|- ( ph -> Z ~<_ _om ) |
167 |
8
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) e. S ) |
168 |
3 166 28 167
|
saliincl |
|- ( ph -> |^|_ n e. Z ( H ` n ) e. S ) |
169 |
|
eqid |
|- ( |^|_ n e. Z ( H ` n ) i^i D ) = ( |^|_ n e. Z ( H ` n ) i^i D ) |
170 |
3 164 168 169
|
elrestd |
|- ( ph -> ( |^|_ n e. Z ( H ` n ) i^i D ) e. ( S |`t D ) ) |
171 |
156 170
|
eqeltrd |
|- ( ph -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) |