| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem1.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smfsuplem1.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smfsuplem1.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfsuplem1.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smfsuplem1.d |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 6 |  | smfsuplem1.g |  |-  G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 7 |  | smfsuplem1.a |  |-  ( ph -> A e. RR ) | 
						
							| 8 |  | smfsuplem1.h |  |-  ( ph -> H : Z --> S ) | 
						
							| 9 |  | smfsuplem1.i |  |-  ( ( ph /\ n e. Z ) -> ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ n e. Z ) -> S e. SAlg ) | 
						
							| 11 | 4 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) | 
						
							| 12 |  | eqid |  |-  dom ( F ` n ) = dom ( F ` n ) | 
						
							| 13 | 10 11 12 | smff |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 14 | 13 | ffnd |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) Fn dom ( F ` n ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( F ` n ) Fn dom ( F ` n ) ) | 
						
							| 16 |  | ssrab2 |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } C_ |^|_ n e. Z dom ( F ` n ) | 
						
							| 17 | 5 16 | eqsstri |  |-  D C_ |^|_ n e. Z dom ( F ` n ) | 
						
							| 18 |  | iinss2 |  |-  ( n e. Z -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) | 
						
							| 19 | 17 18 | sstrid |  |-  ( n e. Z -> D C_ dom ( F ` n ) ) | 
						
							| 20 | 19 | ad2antlr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> D C_ dom ( F ` n ) ) | 
						
							| 21 |  | cnvimass |  |-  ( `' G " ( -oo (,] A ) ) C_ dom G | 
						
							| 22 | 21 | sseli |  |-  ( x e. ( `' G " ( -oo (,] A ) ) -> x e. dom G ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. dom G ) | 
						
							| 24 |  | nfv |  |-  F/ n ( ph /\ x e. D ) | 
						
							| 25 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 26 | 1 25 | syl |  |-  ( ph -> M e. ( ZZ>= ` M ) ) | 
						
							| 27 | 26 2 | eleqtrrdi |  |-  ( ph -> M e. Z ) | 
						
							| 28 | 27 | ne0d |  |-  ( ph -> Z =/= (/) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ x e. D ) -> Z =/= (/) ) | 
						
							| 30 | 13 | adantlr |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 31 | 18 | adantl |  |-  ( ( x e. D /\ n e. Z ) -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) | 
						
							| 32 | 17 | sseli |  |-  ( x e. D -> x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( x e. D /\ n e. Z ) -> x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 34 | 31 33 | sseldd |  |-  ( ( x e. D /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 35 | 34 | adantll |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 36 | 30 35 | ffvelcdmd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 37 | 5 | reqabi |  |-  ( x e. D <-> ( x e. |^|_ n e. Z dom ( F ` n ) /\ E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) | 
						
							| 38 | 37 | simprbi |  |-  ( x e. D -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ x e. D ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) | 
						
							| 40 | 24 29 36 39 | suprclrnmpt |  |-  ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) | 
						
							| 41 | 40 6 | fmptd |  |-  ( ph -> G : D --> RR ) | 
						
							| 42 | 41 | fdmd |  |-  ( ph -> dom G = D ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> dom G = D ) | 
						
							| 44 | 23 43 | eleqtrd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. D ) | 
						
							| 45 | 20 44 | sseldd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. dom ( F ` n ) ) | 
						
							| 46 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 47 | 46 | a1i |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> -oo e. RR* ) | 
						
							| 48 | 7 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> A e. RR* ) | 
						
							| 50 | 36 | an32s |  |-  ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 51 | 44 50 | syldan |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 52 | 51 | rexrd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. RR* ) | 
						
							| 53 | 51 | mnfltd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> -oo < ( ( F ` n ) ` x ) ) | 
						
							| 54 | 22 | adantl |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. dom G ) | 
						
							| 55 | 41 | ffdmd |  |-  ( ph -> G : dom G --> RR ) | 
						
							| 56 | 55 | ffvelcdmda |  |-  ( ( ph /\ x e. dom G ) -> ( G ` x ) e. RR ) | 
						
							| 57 | 54 56 | syldan |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) e. RR ) | 
						
							| 58 | 57 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) e. RR ) | 
						
							| 59 | 7 | ad2antrr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> A e. RR ) | 
						
							| 60 |  | an32 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. D ) <-> ( ( ph /\ x e. D ) /\ n e. Z ) ) | 
						
							| 61 | 60 | biimpi |  |-  ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( ph /\ x e. D ) /\ n e. Z ) ) | 
						
							| 62 | 24 36 39 | suprubrnmpt |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) <_ sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( F ` n ) ` x ) <_ sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 64 | 6 | a1i |  |-  ( ph -> G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) | 
						
							| 65 | 64 40 | fvmpt2d |  |-  ( ( ph /\ x e. D ) -> ( G ` x ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 66 | 65 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( G ` x ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 67 | 63 66 | breqtrrd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. D ) -> ( ( F ` n ) ` x ) <_ ( G ` x ) ) | 
						
							| 68 | 44 67 | syldan |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) <_ ( G ` x ) ) | 
						
							| 69 | 46 | a1i |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> -oo e. RR* ) | 
						
							| 70 | 48 | adantr |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> A e. RR* ) | 
						
							| 71 |  | simpr |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. ( `' G " ( -oo (,] A ) ) ) | 
						
							| 72 | 41 | ffnd |  |-  ( ph -> G Fn D ) | 
						
							| 73 |  | elpreima |  |-  ( G Fn D -> ( x e. ( `' G " ( -oo (,] A ) ) <-> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) ) | 
						
							| 74 | 72 73 | syl |  |-  ( ph -> ( x e. ( `' G " ( -oo (,] A ) ) <-> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( x e. ( `' G " ( -oo (,] A ) ) <-> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) ) | 
						
							| 76 | 71 75 | mpbid |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( x e. D /\ ( G ` x ) e. ( -oo (,] A ) ) ) | 
						
							| 77 | 76 | simprd |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) e. ( -oo (,] A ) ) | 
						
							| 78 | 69 70 77 | iocleubd |  |-  ( ( ph /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) <_ A ) | 
						
							| 79 | 78 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( G ` x ) <_ A ) | 
						
							| 80 | 51 58 59 68 79 | letrd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) <_ A ) | 
						
							| 81 | 47 49 52 53 80 | eliocd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) | 
						
							| 82 | 15 45 81 | elpreimad |  |-  ( ( ( ph /\ n e. Z ) /\ x e. ( `' G " ( -oo (,] A ) ) ) -> x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) | 
						
							| 83 | 82 | ssd |  |-  ( ( ph /\ n e. Z ) -> ( `' G " ( -oo (,] A ) ) C_ ( `' ( F ` n ) " ( -oo (,] A ) ) ) | 
						
							| 84 |  | inss1 |  |-  ( ( H ` n ) i^i dom ( F ` n ) ) C_ ( H ` n ) | 
						
							| 85 | 9 84 | eqsstrdi |  |-  ( ( ph /\ n e. Z ) -> ( `' ( F ` n ) " ( -oo (,] A ) ) C_ ( H ` n ) ) | 
						
							| 86 | 83 85 | sstrd |  |-  ( ( ph /\ n e. Z ) -> ( `' G " ( -oo (,] A ) ) C_ ( H ` n ) ) | 
						
							| 87 | 86 | ralrimiva |  |-  ( ph -> A. n e. Z ( `' G " ( -oo (,] A ) ) C_ ( H ` n ) ) | 
						
							| 88 |  | ssiin |  |-  ( ( `' G " ( -oo (,] A ) ) C_ |^|_ n e. Z ( H ` n ) <-> A. n e. Z ( `' G " ( -oo (,] A ) ) C_ ( H ` n ) ) | 
						
							| 89 | 87 88 | sylibr |  |-  ( ph -> ( `' G " ( -oo (,] A ) ) C_ |^|_ n e. Z ( H ` n ) ) | 
						
							| 90 | 21 41 | fssdm |  |-  ( ph -> ( `' G " ( -oo (,] A ) ) C_ D ) | 
						
							| 91 | 89 90 | ssind |  |-  ( ph -> ( `' G " ( -oo (,] A ) ) C_ ( |^|_ n e. Z ( H ` n ) i^i D ) ) | 
						
							| 92 |  | iniin1 |  |-  ( Z =/= (/) -> ( |^|_ n e. Z ( H ` n ) i^i D ) = |^|_ n e. Z ( ( H ` n ) i^i D ) ) | 
						
							| 93 | 28 92 | syl |  |-  ( ph -> ( |^|_ n e. Z ( H ` n ) i^i D ) = |^|_ n e. Z ( ( H ` n ) i^i D ) ) | 
						
							| 94 | 72 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> G Fn D ) | 
						
							| 95 |  | simpr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) | 
						
							| 96 | 27 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> M e. Z ) | 
						
							| 97 |  | fveq2 |  |-  ( n = M -> ( H ` n ) = ( H ` M ) ) | 
						
							| 98 | 97 | ineq1d |  |-  ( n = M -> ( ( H ` n ) i^i D ) = ( ( H ` M ) i^i D ) ) | 
						
							| 99 | 98 | eleq2d |  |-  ( n = M -> ( x e. ( ( H ` n ) i^i D ) <-> x e. ( ( H ` M ) i^i D ) ) ) | 
						
							| 100 | 95 96 99 | eliind |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. ( ( H ` M ) i^i D ) ) | 
						
							| 101 |  | elinel2 |  |-  ( x e. ( ( H ` M ) i^i D ) -> x e. D ) | 
						
							| 102 | 100 101 | syl |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. D ) | 
						
							| 103 | 46 | a1i |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> -oo e. RR* ) | 
						
							| 104 | 48 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> A e. RR* ) | 
						
							| 105 | 65 40 | eqeltrd |  |-  ( ( ph /\ x e. D ) -> ( G ` x ) e. RR ) | 
						
							| 106 | 105 | rexrd |  |-  ( ( ph /\ x e. D ) -> ( G ` x ) e. RR* ) | 
						
							| 107 | 102 106 | syldan |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) e. RR* ) | 
						
							| 108 | 101 | adantl |  |-  ( ( ph /\ x e. ( ( H ` M ) i^i D ) ) -> x e. D ) | 
						
							| 109 | 108 105 | syldan |  |-  ( ( ph /\ x e. ( ( H ` M ) i^i D ) ) -> ( G ` x ) e. RR ) | 
						
							| 110 | 109 | mnfltd |  |-  ( ( ph /\ x e. ( ( H ` M ) i^i D ) ) -> -oo < ( G ` x ) ) | 
						
							| 111 | 100 110 | syldan |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> -oo < ( G ` x ) ) | 
						
							| 112 | 102 65 | syldan |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 113 |  | nfv |  |-  F/ n ph | 
						
							| 114 |  | nfcv |  |-  F/_ n x | 
						
							| 115 |  | nfii1 |  |-  F/_ n |^|_ n e. Z ( ( H ` n ) i^i D ) | 
						
							| 116 | 114 115 | nfel |  |-  F/ n x e. |^|_ n e. Z ( ( H ` n ) i^i D ) | 
						
							| 117 | 113 116 | nfan |  |-  F/ n ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) | 
						
							| 118 |  | simpll |  |-  ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> ph ) | 
						
							| 119 |  | simpr |  |-  ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> n e. Z ) | 
						
							| 120 |  | eliinid |  |-  ( ( x e. |^|_ n e. Z ( ( H ` n ) i^i D ) /\ n e. Z ) -> x e. ( ( H ` n ) i^i D ) ) | 
						
							| 121 | 120 | adantll |  |-  ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> x e. ( ( H ` n ) i^i D ) ) | 
						
							| 122 |  | elinel1 |  |-  ( x e. ( ( H ` n ) i^i D ) -> x e. ( H ` n ) ) | 
						
							| 123 | 122 | 3ad2ant3 |  |-  ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. ( H ` n ) ) | 
						
							| 124 |  | elinel2 |  |-  ( x e. ( ( H ` n ) i^i D ) -> x e. D ) | 
						
							| 125 | 124 | adantl |  |-  ( ( n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. D ) | 
						
							| 126 | 34 | ancoms |  |-  ( ( n e. Z /\ x e. D ) -> x e. dom ( F ` n ) ) | 
						
							| 127 | 125 126 | syldan |  |-  ( ( n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. dom ( F ` n ) ) | 
						
							| 128 | 127 | 3adant1 |  |-  ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. dom ( F ` n ) ) | 
						
							| 129 | 123 128 | elind |  |-  ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. ( ( H ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 130 | 9 | 3adant3 |  |-  ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( H ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 131 | 129 130 | eleqtrrd |  |-  ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) | 
						
							| 132 | 46 | a1i |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> -oo e. RR* ) | 
						
							| 133 | 48 | 3ad2ant1 |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> A e. RR* ) | 
						
							| 134 |  | simp3 |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) | 
						
							| 135 |  | elpreima |  |-  ( ( F ` n ) Fn dom ( F ` n ) -> ( x e. ( `' ( F ` n ) " ( -oo (,] A ) ) <-> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) ) | 
						
							| 136 | 14 135 | syl |  |-  ( ( ph /\ n e. Z ) -> ( x e. ( `' ( F ` n ) " ( -oo (,] A ) ) <-> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) ) | 
						
							| 137 | 136 | 3adant3 |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( x e. ( `' ( F ` n ) " ( -oo (,] A ) ) <-> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) ) | 
						
							| 138 | 134 137 | mpbid |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( x e. dom ( F ` n ) /\ ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) ) | 
						
							| 139 | 138 | simprd |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) e. ( -oo (,] A ) ) | 
						
							| 140 | 132 133 139 | iocleubd |  |-  ( ( ph /\ n e. Z /\ x e. ( `' ( F ` n ) " ( -oo (,] A ) ) ) -> ( ( F ` n ) ` x ) <_ A ) | 
						
							| 141 | 131 140 | syld3an3 |  |-  ( ( ph /\ n e. Z /\ x e. ( ( H ` n ) i^i D ) ) -> ( ( F ` n ) ` x ) <_ A ) | 
						
							| 142 | 118 119 121 141 | syl3anc |  |-  ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> ( ( F ` n ) ` x ) <_ A ) | 
						
							| 143 | 142 | ex |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( n e. Z -> ( ( F ` n ) ` x ) <_ A ) ) | 
						
							| 144 | 117 143 | ralrimi |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> A. n e. Z ( ( F ` n ) ` x ) <_ A ) | 
						
							| 145 | 28 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> Z =/= (/) ) | 
						
							| 146 | 102 36 | syldanl |  |-  ( ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 147 | 102 38 | syl |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) | 
						
							| 148 | 7 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> A e. RR ) | 
						
							| 149 | 117 145 146 147 148 | suprleubrnmpt |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) <_ A <-> A. n e. Z ( ( F ` n ) ` x ) <_ A ) ) | 
						
							| 150 | 144 149 | mpbird |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) <_ A ) | 
						
							| 151 | 112 150 | eqbrtrd |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) <_ A ) | 
						
							| 152 | 103 104 107 111 151 | eliocd |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> ( G ` x ) e. ( -oo (,] A ) ) | 
						
							| 153 | 94 102 152 | elpreimad |  |-  ( ( ph /\ x e. |^|_ n e. Z ( ( H ` n ) i^i D ) ) -> x e. ( `' G " ( -oo (,] A ) ) ) | 
						
							| 154 | 153 | ssd |  |-  ( ph -> |^|_ n e. Z ( ( H ` n ) i^i D ) C_ ( `' G " ( -oo (,] A ) ) ) | 
						
							| 155 | 93 154 | eqsstrd |  |-  ( ph -> ( |^|_ n e. Z ( H ` n ) i^i D ) C_ ( `' G " ( -oo (,] A ) ) ) | 
						
							| 156 | 91 155 | eqssd |  |-  ( ph -> ( `' G " ( -oo (,] A ) ) = ( |^|_ n e. Z ( H ` n ) i^i D ) ) | 
						
							| 157 |  | eqid |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 158 |  | fvex |  |-  ( F ` n ) e. _V | 
						
							| 159 | 158 | dmex |  |-  dom ( F ` n ) e. _V | 
						
							| 160 | 159 | rgenw |  |-  A. n e. Z dom ( F ` n ) e. _V | 
						
							| 161 | 160 | a1i |  |-  ( ph -> A. n e. Z dom ( F ` n ) e. _V ) | 
						
							| 162 | 28 161 | iinexd |  |-  ( ph -> |^|_ n e. Z dom ( F ` n ) e. _V ) | 
						
							| 163 | 157 162 | rabexd |  |-  ( ph -> { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } e. _V ) | 
						
							| 164 | 5 163 | eqeltrid |  |-  ( ph -> D e. _V ) | 
						
							| 165 | 2 | uzct |  |-  Z ~<_ _om | 
						
							| 166 | 165 | a1i |  |-  ( ph -> Z ~<_ _om ) | 
						
							| 167 | 8 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) e. S ) | 
						
							| 168 | 3 166 28 167 | saliincl |  |-  ( ph -> |^|_ n e. Z ( H ` n ) e. S ) | 
						
							| 169 |  | eqid |  |-  ( |^|_ n e. Z ( H ` n ) i^i D ) = ( |^|_ n e. Z ( H ` n ) i^i D ) | 
						
							| 170 | 3 164 168 169 | elrestd |  |-  ( ph -> ( |^|_ n e. Z ( H ` n ) i^i D ) e. ( S |`t D ) ) | 
						
							| 171 | 156 170 | eqeltrd |  |-  ( ph -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) |