| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem2.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smfsuplem2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smfsuplem2.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfsuplem2.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smfsuplem2.d |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 6 |  | smfsuplem2.g |  |-  G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 7 |  | smfsuplem2.8 |  |-  ( ph -> A e. RR ) | 
						
							| 8 |  | nfcv |  |-  F/_ n F | 
						
							| 9 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 10 |  | eqid |  |-  ( SalGen ` ( topGen ` ran (,) ) ) = ( SalGen ` ( topGen ` ran (,) ) ) | 
						
							| 11 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 12 | 11 | a1i |  |-  ( ph -> -oo e. RR* ) | 
						
							| 13 | 12 7 9 10 | iocborel |  |-  ( ph -> ( -oo (,] A ) e. ( SalGen ` ( topGen ` ran (,) ) ) ) | 
						
							| 14 | 8 2 3 4 9 10 13 | smfpimcc |  |-  ( ph -> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) | 
						
							| 15 | 1 | adantr |  |-  ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> M e. ZZ ) | 
						
							| 16 | 3 | adantr |  |-  ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> S e. SAlg ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 18 |  | fveq2 |  |-  ( n = m -> ( F ` n ) = ( F ` m ) ) | 
						
							| 19 | 18 | dmeqd |  |-  ( n = m -> dom ( F ` n ) = dom ( F ` m ) ) | 
						
							| 20 | 19 | cbviinv |  |-  |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) | 
						
							| 21 | 20 | a1i |  |-  ( x = w -> |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) ) | 
						
							| 22 |  | fveq2 |  |-  ( x = w -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` w ) ) | 
						
							| 23 | 22 | breq1d |  |-  ( x = w -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` n ) ` w ) <_ y ) ) | 
						
							| 24 | 23 | ralbidv |  |-  ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. n e. Z ( ( F ` n ) ` w ) <_ y ) ) | 
						
							| 25 | 18 | fveq1d |  |-  ( n = m -> ( ( F ` n ) ` w ) = ( ( F ` m ) ` w ) ) | 
						
							| 26 | 25 | breq1d |  |-  ( n = m -> ( ( ( F ` n ) ` w ) <_ y <-> ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 27 | 26 | cbvralvw |  |-  ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) | 
						
							| 28 | 27 | a1i |  |-  ( x = w -> ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 29 | 24 28 | bitrd |  |-  ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 30 | 29 | rexbidv |  |-  ( x = w -> ( E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y <-> E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 31 | 21 30 | cbvrabv2w |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { w e. |^|_ m e. Z dom ( F ` m ) | E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y } | 
						
							| 32 | 5 31 | eqtri |  |-  D = { w e. |^|_ m e. Z dom ( F ` m ) | E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y } | 
						
							| 33 | 22 | mpteq2dv |  |-  ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( n e. Z |-> ( ( F ` n ) ` w ) ) ) | 
						
							| 34 | 25 | cbvmptv |  |-  ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) | 
						
							| 35 | 34 | a1i |  |-  ( x = w -> ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) | 
						
							| 36 | 33 35 | eqtrd |  |-  ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) | 
						
							| 37 | 36 | rneqd |  |-  ( x = w -> ran ( n e. Z |-> ( ( F ` n ) ` x ) ) = ran ( m e. Z |-> ( ( F ` m ) ` w ) ) ) | 
						
							| 38 | 37 | supeq1d |  |-  ( x = w -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) | 
						
							| 39 | 38 | cbvmptv |  |-  ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) | 
						
							| 40 | 6 39 | eqtri |  |-  G = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) | 
						
							| 41 | 7 | adantr |  |-  ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> A e. RR ) | 
						
							| 42 |  | simprl |  |-  ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> h : Z --> S ) | 
						
							| 43 |  | simplrr |  |-  ( ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) /\ m e. Z ) -> A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) | 
						
							| 44 | 18 | cnveqd |  |-  ( n = m -> `' ( F ` n ) = `' ( F ` m ) ) | 
						
							| 45 | 44 | imaeq1d |  |-  ( n = m -> ( `' ( F ` n ) " ( -oo (,] A ) ) = ( `' ( F ` m ) " ( -oo (,] A ) ) ) | 
						
							| 46 |  | fveq2 |  |-  ( n = m -> ( h ` n ) = ( h ` m ) ) | 
						
							| 47 | 46 19 | ineq12d |  |-  ( n = m -> ( ( h ` n ) i^i dom ( F ` n ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) | 
						
							| 48 | 45 47 | eqeq12d |  |-  ( n = m -> ( ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) <-> ( `' ( F ` m ) " ( -oo (,] A ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) | 
						
							| 49 | 48 | rspccva |  |-  ( ( A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) /\ m e. Z ) -> ( `' ( F ` m ) " ( -oo (,] A ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) | 
						
							| 50 | 43 49 | sylancom |  |-  ( ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) /\ m e. Z ) -> ( `' ( F ` m ) " ( -oo (,] A ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) | 
						
							| 51 | 15 2 16 17 32 40 41 42 50 | smfsuplem1 |  |-  ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) | 
						
							| 52 | 51 | ex |  |-  ( ph -> ( ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) ) | 
						
							| 53 | 52 | exlimdv |  |-  ( ph -> ( E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) ) | 
						
							| 54 | 14 53 | mpd |  |-  ( ph -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) |