Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem2.m |
|- ( ph -> M e. ZZ ) |
2 |
|
smfsuplem2.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
smfsuplem2.s |
|- ( ph -> S e. SAlg ) |
4 |
|
smfsuplem2.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
5 |
|
smfsuplem2.d |
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
6 |
|
smfsuplem2.g |
|- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
7 |
|
smfsuplem2.8 |
|- ( ph -> A e. RR ) |
8 |
|
nfcv |
|- F/_ n F |
9 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
10 |
|
eqid |
|- ( SalGen ` ( topGen ` ran (,) ) ) = ( SalGen ` ( topGen ` ran (,) ) ) |
11 |
|
mnfxr |
|- -oo e. RR* |
12 |
11
|
a1i |
|- ( ph -> -oo e. RR* ) |
13 |
12 7 9 10
|
iocborel |
|- ( ph -> ( -oo (,] A ) e. ( SalGen ` ( topGen ` ran (,) ) ) ) |
14 |
8 2 3 4 9 10 13
|
smfpimcc |
|- ( ph -> E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) |
15 |
1
|
adantr |
|- ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> M e. ZZ ) |
16 |
3
|
adantr |
|- ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> S e. SAlg ) |
17 |
4
|
adantr |
|- ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> F : Z --> ( SMblFn ` S ) ) |
18 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
19 |
18
|
dmeqd |
|- ( n = m -> dom ( F ` n ) = dom ( F ` m ) ) |
20 |
19
|
cbviinv |
|- |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) |
21 |
20
|
a1i |
|- ( x = w -> |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) ) |
22 |
|
fveq2 |
|- ( x = w -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` w ) ) |
23 |
22
|
breq1d |
|- ( x = w -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` n ) ` w ) <_ y ) ) |
24 |
23
|
ralbidv |
|- ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. n e. Z ( ( F ` n ) ` w ) <_ y ) ) |
25 |
18
|
fveq1d |
|- ( n = m -> ( ( F ` n ) ` w ) = ( ( F ` m ) ` w ) ) |
26 |
25
|
breq1d |
|- ( n = m -> ( ( ( F ` n ) ` w ) <_ y <-> ( ( F ` m ) ` w ) <_ y ) ) |
27 |
26
|
cbvralvw |
|- ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) |
28 |
27
|
a1i |
|- ( x = w -> ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) |
29 |
24 28
|
bitrd |
|- ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) |
30 |
29
|
rexbidv |
|- ( x = w -> ( E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y <-> E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) |
31 |
21 30
|
cbvrabv2w |
|- { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { w e. |^|_ m e. Z dom ( F ` m ) | E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y } |
32 |
5 31
|
eqtri |
|- D = { w e. |^|_ m e. Z dom ( F ` m ) | E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y } |
33 |
22
|
mpteq2dv |
|- ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( n e. Z |-> ( ( F ` n ) ` w ) ) ) |
34 |
25
|
cbvmptv |
|- ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) |
35 |
34
|
a1i |
|- ( x = w -> ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) |
36 |
33 35
|
eqtrd |
|- ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) |
37 |
36
|
rneqd |
|- ( x = w -> ran ( n e. Z |-> ( ( F ` n ) ` x ) ) = ran ( m e. Z |-> ( ( F ` m ) ` w ) ) ) |
38 |
37
|
supeq1d |
|- ( x = w -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) |
39 |
38
|
cbvmptv |
|- ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) |
40 |
6 39
|
eqtri |
|- G = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) |
41 |
7
|
adantr |
|- ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> A e. RR ) |
42 |
|
simprl |
|- ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> h : Z --> S ) |
43 |
|
simplrr |
|- ( ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) /\ m e. Z ) -> A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) |
44 |
18
|
cnveqd |
|- ( n = m -> `' ( F ` n ) = `' ( F ` m ) ) |
45 |
44
|
imaeq1d |
|- ( n = m -> ( `' ( F ` n ) " ( -oo (,] A ) ) = ( `' ( F ` m ) " ( -oo (,] A ) ) ) |
46 |
|
fveq2 |
|- ( n = m -> ( h ` n ) = ( h ` m ) ) |
47 |
46 19
|
ineq12d |
|- ( n = m -> ( ( h ` n ) i^i dom ( F ` n ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) |
48 |
45 47
|
eqeq12d |
|- ( n = m -> ( ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) <-> ( `' ( F ` m ) " ( -oo (,] A ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) ) |
49 |
48
|
rspccva |
|- ( ( A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) /\ m e. Z ) -> ( `' ( F ` m ) " ( -oo (,] A ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) |
50 |
43 49
|
sylancom |
|- ( ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) /\ m e. Z ) -> ( `' ( F ` m ) " ( -oo (,] A ) ) = ( ( h ` m ) i^i dom ( F ` m ) ) ) |
51 |
15 2 16 17 32 40 41 42 50
|
smfsuplem1 |
|- ( ( ph /\ ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) ) -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) |
52 |
51
|
ex |
|- ( ph -> ( ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) ) |
53 |
52
|
exlimdv |
|- ( ph -> ( E. h ( h : Z --> S /\ A. n e. Z ( `' ( F ` n ) " ( -oo (,] A ) ) = ( ( h ` n ) i^i dom ( F ` n ) ) ) -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) ) |
54 |
14 53
|
mpd |
|- ( ph -> ( `' G " ( -oo (,] A ) ) e. ( S |`t D ) ) |