| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smfsuplem2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smfsuplem2.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfsuplem2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfsuplem2.d | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 6 |  | smfsuplem2.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 7 |  | smfsuplem2.8 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑛 𝐹 | 
						
							| 9 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 10 |  | eqid | ⊢ ( SalGen ‘ ( topGen ‘ ran  (,) ) )  =  ( SalGen ‘ ( topGen ‘ ran  (,) ) ) | 
						
							| 11 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  -∞  ∈  ℝ* ) | 
						
							| 13 | 12 7 9 10 | iocborel | ⊢ ( 𝜑  →  ( -∞ (,] 𝐴 )  ∈  ( SalGen ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 14 | 8 2 3 4 9 10 13 | smfpimcc | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  →  𝑆  ∈  SAlg ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 19 | 18 | dmeqd | ⊢ ( 𝑛  =  𝑚  →  dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 20 | 19 | cbviinv | ⊢ ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  =  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝑥  =  𝑤  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  =  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) | 
						
							| 23 | 22 | breq1d | ⊢ ( 𝑥  =  𝑤  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ≤  𝑦 ) ) | 
						
							| 24 | 23 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ≤  𝑦 ) ) | 
						
							| 25 | 18 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 26 | 25 | breq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ≤  𝑦  ↔  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 ) ) | 
						
							| 27 | 26 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 ) ) | 
						
							| 29 | 24 28 | bitrd | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∀ 𝑚  ∈  𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 ) ) | 
						
							| 30 | 29 | rexbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 ) ) | 
						
							| 31 | 21 30 | cbvrabv2w | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  =  { 𝑤  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 } | 
						
							| 32 | 5 31 | eqtri | ⊢ 𝐷  =  { 𝑤  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ≤  𝑦 } | 
						
							| 33 | 22 | mpteq2dv | ⊢ ( 𝑥  =  𝑤  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) | 
						
							| 34 | 25 | cbvmptv | ⊢ ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 35 | 34 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 36 | 33 35 | eqtrd | ⊢ ( 𝑥  =  𝑤  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 37 | 36 | rneqd | ⊢ ( 𝑥  =  𝑤  →  ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 38 | 37 | supeq1d | ⊢ ( 𝑥  =  𝑤  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) ) | 
						
							| 39 | 38 | cbvmptv | ⊢ ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑤  ∈  𝐷  ↦  sup ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) ) | 
						
							| 40 | 6 39 | eqtri | ⊢ 𝐺  =  ( 𝑤  ∈  𝐷  ↦  sup ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) ) | 
						
							| 41 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 42 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  →  ℎ : 𝑍 ⟶ 𝑆 ) | 
						
							| 43 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  ∧  𝑚  ∈  𝑍 )  →  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 44 | 18 | cnveqd | ⊢ ( 𝑛  =  𝑚  →  ◡ ( 𝐹 ‘ 𝑛 )  =  ◡ ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 45 | 44 | imaeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ◡ ( 𝐹 ‘ 𝑚 )  “  ( -∞ (,] 𝐴 ) ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ℎ ‘ 𝑛 )  =  ( ℎ ‘ 𝑚 ) ) | 
						
							| 47 | 46 19 | ineq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 48 | 45 47 | eqeq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  ↔  ( ◡ ( 𝐹 ‘ 𝑚 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 49 | 48 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑚  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑚 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 50 | 43 49 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  ∧  𝑚  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑚 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 51 | 15 2 16 17 32 40 41 42 50 | smfsuplem1 | ⊢ ( ( 𝜑  ∧  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) )  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 52 | 51 | ex | ⊢ ( 𝜑  →  ( ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 53 | 52 | exlimdv | ⊢ ( 𝜑  →  ( ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  ( -∞ (,] 𝐴 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 54 | 14 53 | mpd | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  ( -∞ (,] 𝐴 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) |