Metamath Proof Explorer


Theorem smfsuplem2

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsuplem2.m ( 𝜑𝑀 ∈ ℤ )
smfsuplem2.z 𝑍 = ( ℤ𝑀 )
smfsuplem2.s ( 𝜑𝑆 ∈ SAlg )
smfsuplem2.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfsuplem2.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
smfsuplem2.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
smfsuplem2.8 ( 𝜑𝐴 ∈ ℝ )
Assertion smfsuplem2 ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfsuplem2.m ( 𝜑𝑀 ∈ ℤ )
2 smfsuplem2.z 𝑍 = ( ℤ𝑀 )
3 smfsuplem2.s ( 𝜑𝑆 ∈ SAlg )
4 smfsuplem2.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
5 smfsuplem2.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
6 smfsuplem2.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
7 smfsuplem2.8 ( 𝜑𝐴 ∈ ℝ )
8 nfcv 𝑛 𝐹
9 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
10 eqid ( SalGen ‘ ( topGen ‘ ran (,) ) ) = ( SalGen ‘ ( topGen ‘ ran (,) ) )
11 mnfxr -∞ ∈ ℝ*
12 11 a1i ( 𝜑 → -∞ ∈ ℝ* )
13 12 7 9 10 iocborel ( 𝜑 → ( -∞ (,] 𝐴 ) ∈ ( SalGen ‘ ( topGen ‘ ran (,) ) ) )
14 8 2 3 4 9 10 13 smfpimcc ( 𝜑 → ∃ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) )
15 1 adantr ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) → 𝑀 ∈ ℤ )
16 3 adantr ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) → 𝑆 ∈ SAlg )
17 4 adantr ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
18 fveq2 ( 𝑛 = 𝑚 → ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
19 18 dmeqd ( 𝑛 = 𝑚 → dom ( 𝐹𝑛 ) = dom ( 𝐹𝑚 ) )
20 19 cbviinv 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 )
21 20 a1i ( 𝑥 = 𝑤 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 ) )
22 fveq2 ( 𝑥 = 𝑤 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑤 ) )
23 22 breq1d ( 𝑥 = 𝑤 → ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) )
24 23 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) )
25 18 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐹𝑛 ) ‘ 𝑤 ) = ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
26 25 breq1d ( 𝑛 = 𝑚 → ( ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
27 26 cbvralvw ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 )
28 27 a1i ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
29 24 28 bitrd ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
30 29 rexbidv ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
31 21 30 cbvrabv2w { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 }
32 5 31 eqtri 𝐷 = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 }
33 22 mpteq2dv ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
34 25 cbvmptv ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
35 34 a1i ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
36 33 35 eqtrd ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
37 36 rneqd ( 𝑥 = 𝑤 → ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
38 37 supeq1d ( 𝑥 = 𝑤 → sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
39 38 cbvmptv ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑤𝐷 ↦ sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
40 6 39 eqtri 𝐺 = ( 𝑤𝐷 ↦ sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
41 7 adantr ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) → 𝐴 ∈ ℝ )
42 simprl ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) → : 𝑍𝑆 )
43 simplrr ( ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) ∧ 𝑚𝑍 ) → ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) )
44 18 cnveqd ( 𝑛 = 𝑚 ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
45 44 imaeq1d ( 𝑛 = 𝑚 → ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝐹𝑚 ) “ ( -∞ (,] 𝐴 ) ) )
46 fveq2 ( 𝑛 = 𝑚 → ( 𝑛 ) = ( 𝑚 ) )
47 46 19 ineq12d ( 𝑛 = 𝑚 → ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) = ( ( 𝑚 ) ∩ dom ( 𝐹𝑚 ) ) )
48 45 47 eqeq12d ( 𝑛 = 𝑚 → ( ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ↔ ( ( 𝐹𝑚 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑚 ) ∩ dom ( 𝐹𝑚 ) ) ) )
49 48 rspccva ( ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ∧ 𝑚𝑍 ) → ( ( 𝐹𝑚 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑚 ) ∩ dom ( 𝐹𝑚 ) ) )
50 43 49 sylancom ( ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) ∧ 𝑚𝑍 ) → ( ( 𝐹𝑚 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑚 ) ∩ dom ( 𝐹𝑚 ) ) )
51 15 2 16 17 32 40 41 42 50 smfsuplem1 ( ( 𝜑 ∧ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) ) → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) )
52 51 ex ( 𝜑 → ( ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) ) )
53 52 exlimdv ( 𝜑 → ( ∃ ( : 𝑍𝑆 ∧ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( 𝑛 ) ∩ dom ( 𝐹𝑛 ) ) ) → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) ) )
54 14 53 mpd ( 𝜑 → ( 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆t 𝐷 ) )