Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smfsuplem2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smfsuplem2.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfsuplem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfsuplem2.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
6 |
|
smfsuplem2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
7 |
|
smfsuplem2.8 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐹 |
9 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
10 |
|
eqid |
⊢ ( SalGen ‘ ( topGen ‘ ran (,) ) ) = ( SalGen ‘ ( topGen ‘ ran (,) ) ) |
11 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
12 |
11
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
13 |
12 7 9 10
|
iocborel |
⊢ ( 𝜑 → ( -∞ (,] 𝐴 ) ∈ ( SalGen ‘ ( topGen ‘ ran (,) ) ) ) |
14 |
8 2 3 4 9 10 13
|
smfpimcc |
⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) → 𝑀 ∈ ℤ ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) → 𝑆 ∈ SAlg ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
19 |
18
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
20 |
19
|
cbviinv |
⊢ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
21 |
20
|
a1i |
⊢ ( 𝑥 = 𝑤 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
23 |
22
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
25 |
18
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
26 |
25
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
27 |
26
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) |
28 |
27
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
29 |
24 28
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
30 |
29
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
31 |
21 30
|
cbvrabv2w |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 } |
32 |
5 31
|
eqtri |
⊢ 𝐷 = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 } |
33 |
22
|
mpteq2dv |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
34 |
25
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
35 |
34
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
36 |
33 35
|
eqtrd |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
37 |
36
|
rneqd |
⊢ ( 𝑥 = 𝑤 → ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
38 |
37
|
supeq1d |
⊢ ( 𝑥 = 𝑤 → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
39 |
38
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑤 ∈ 𝐷 ↦ sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
40 |
6 39
|
eqtri |
⊢ 𝐺 = ( 𝑤 ∈ 𝐷 ↦ sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
41 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) → 𝐴 ∈ ℝ ) |
42 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) → ℎ : 𝑍 ⟶ 𝑆 ) |
43 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) ∧ 𝑚 ∈ 𝑍 ) → ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
44 |
18
|
cnveqd |
⊢ ( 𝑛 = 𝑚 → ◡ ( 𝐹 ‘ 𝑛 ) = ◡ ( 𝐹 ‘ 𝑚 ) ) |
45 |
44
|
imaeq1d |
⊢ ( 𝑛 = 𝑚 → ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ◡ ( 𝐹 ‘ 𝑚 ) “ ( -∞ (,] 𝐴 ) ) ) |
46 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ℎ ‘ 𝑛 ) = ( ℎ ‘ 𝑚 ) ) |
47 |
46 19
|
ineq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
48 |
45 47
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ↔ ( ◡ ( 𝐹 ‘ 𝑚 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
49 |
48
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑚 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
50 |
43 49
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) ∧ 𝑚 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑚 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
51 |
15 2 16 17 32 40 41 42 50
|
smfsuplem1 |
⊢ ( ( 𝜑 ∧ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
52 |
51
|
ex |
⊢ ( 𝜑 → ( ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
53 |
52
|
exlimdv |
⊢ ( 𝜑 → ( ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ ( -∞ (,] 𝐴 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
54 |
14 53
|
mpd |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,] 𝐴 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |