Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfsuplem2.m | |
|
smfsuplem2.z | |
||
smfsuplem2.s | |
||
smfsuplem2.f | |
||
smfsuplem2.d | |
||
smfsuplem2.g | |
||
smfsuplem2.8 | |
||
Assertion | smfsuplem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfsuplem2.m | |
|
2 | smfsuplem2.z | |
|
3 | smfsuplem2.s | |
|
4 | smfsuplem2.f | |
|
5 | smfsuplem2.d | |
|
6 | smfsuplem2.g | |
|
7 | smfsuplem2.8 | |
|
8 | nfcv | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | mnfxr | |
|
12 | 11 | a1i | |
13 | 12 7 9 10 | iocborel | |
14 | 8 2 3 4 9 10 13 | smfpimcc | |
15 | 1 | adantr | |
16 | 3 | adantr | |
17 | 4 | adantr | |
18 | fveq2 | |
|
19 | 18 | dmeqd | |
20 | 19 | cbviinv | |
21 | 20 | a1i | |
22 | fveq2 | |
|
23 | 22 | breq1d | |
24 | 23 | ralbidv | |
25 | 18 | fveq1d | |
26 | 25 | breq1d | |
27 | 26 | cbvralvw | |
28 | 27 | a1i | |
29 | 24 28 | bitrd | |
30 | 29 | rexbidv | |
31 | 21 30 | cbvrabv2w | |
32 | 5 31 | eqtri | |
33 | 22 | mpteq2dv | |
34 | 25 | cbvmptv | |
35 | 34 | a1i | |
36 | 33 35 | eqtrd | |
37 | 36 | rneqd | |
38 | 37 | supeq1d | |
39 | 38 | cbvmptv | |
40 | 6 39 | eqtri | |
41 | 7 | adantr | |
42 | simprl | |
|
43 | simplrr | |
|
44 | 18 | cnveqd | |
45 | 44 | imaeq1d | |
46 | fveq2 | |
|
47 | 46 19 | ineq12d | |
48 | 45 47 | eqeq12d | |
49 | 48 | rspccva | |
50 | 43 49 | sylancom | |
51 | 15 2 16 17 32 40 41 42 50 | smfsuplem1 | |
52 | 51 | ex | |
53 | 52 | exlimdv | |
54 | 14 53 | mpd | |