Metamath Proof Explorer


Theorem smfsuplem3

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsuplem3.m φM
smfsuplem3.z Z=M
smfsuplem3.s φSSAlg
smfsuplem3.f φF:ZSMblFnS
smfsuplem3.d D=xnZdomFn|ynZFnxy
smfsuplem3.g G=xDsuprannZFnx<
Assertion smfsuplem3 φGSMblFnS

Proof

Step Hyp Ref Expression
1 smfsuplem3.m φM
2 smfsuplem3.z Z=M
3 smfsuplem3.s φSSAlg
4 smfsuplem3.f φF:ZSMblFnS
5 smfsuplem3.d D=xnZdomFn|ynZFnxy
6 smfsuplem3.g G=xDsuprannZFnx<
7 nfv aφ
8 ssrab2 xnZdomFn|ynZFnxynZdomFn
9 5 8 eqsstri DnZdomFn
10 9 a1i φDnZdomFn
11 uzid MMM
12 1 11 syl φMM
13 12 2 eleqtrrdi φMZ
14 fveq2 n=MFn=FM
15 14 dmeqd n=MdomFn=domFM
16 4 13 ffvelcdmd φFMSMblFnS
17 eqid domFM=domFM
18 3 16 17 smfdmss φdomFMS
19 13 15 18 iinssd φnZdomFnS
20 10 19 sstrd φDS
21 nfv nφxD
22 13 ne0d φZ
23 22 adantr φxDZ
24 3 adantr φnZSSAlg
25 4 ffvelcdmda φnZFnSMblFnS
26 eqid domFn=domFn
27 24 25 26 smff φnZFn:domFn
28 27 adantlr φxDnZFn:domFn
29 iinss2 nZnZdomFndomFn
30 29 adantl xDnZnZdomFndomFn
31 9 sseli xDxnZdomFn
32 31 adantr xDnZxnZdomFn
33 30 32 sseldd xDnZxdomFn
34 33 adantll φxDnZxdomFn
35 28 34 ffvelcdmd φxDnZFnx
36 5 reqabi xDxnZdomFnynZFnxy
37 36 simprbi xDynZFnxy
38 37 adantl φxDynZFnxy
39 21 23 35 38 suprclrnmpt φxDsuprannZFnx<
40 39 6 fmptd φG:D
41 1 adantr φaM
42 3 adantr φaSSAlg
43 4 adantr φaF:ZSMblFnS
44 simpr φaa
45 41 2 42 43 5 6 44 smfsuplem2 φaG-1−∞aS𝑡D
46 7 3 20 40 45 issmfle2d φGSMblFnS