Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem3.m |
|
2 |
|
smfsuplem3.z |
|
3 |
|
smfsuplem3.s |
|
4 |
|
smfsuplem3.f |
|
5 |
|
smfsuplem3.d |
|
6 |
|
smfsuplem3.g |
|
7 |
|
nfv |
|
8 |
|
ssrab2 |
|
9 |
5 8
|
eqsstri |
|
10 |
9
|
a1i |
|
11 |
|
uzid |
|
12 |
1 11
|
syl |
|
13 |
12 2
|
eleqtrrdi |
|
14 |
|
fveq2 |
|
15 |
14
|
dmeqd |
|
16 |
4 13
|
ffvelrnd |
|
17 |
|
eqid |
|
18 |
3 16 17
|
smfdmss |
|
19 |
13 15 18
|
iinssd |
|
20 |
10 19
|
sstrd |
|
21 |
|
nfv |
|
22 |
13
|
ne0d |
|
23 |
22
|
adantr |
|
24 |
3
|
adantr |
|
25 |
4
|
ffvelrnda |
|
26 |
|
eqid |
|
27 |
24 25 26
|
smff |
|
28 |
27
|
adantlr |
|
29 |
|
iinss2 |
|
30 |
29
|
adantl |
|
31 |
9
|
sseli |
|
32 |
31
|
adantr |
|
33 |
30 32
|
sseldd |
|
34 |
33
|
adantll |
|
35 |
28 34
|
ffvelrnd |
|
36 |
5
|
rabeq2i |
|
37 |
36
|
simprbi |
|
38 |
37
|
adantl |
|
39 |
21 23 35 38
|
suprclrnmpt |
|
40 |
39 6
|
fmptd |
|
41 |
1
|
adantr |
|
42 |
3
|
adantr |
|
43 |
4
|
adantr |
|
44 |
|
simpr |
|
45 |
41 2 42 43 5 6 44
|
smfsuplem2 |
|
46 |
7 3 20 40 45
|
issmfle2d |
|