| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem3.m |  | 
						
							| 2 |  | smfsuplem3.z |  | 
						
							| 3 |  | smfsuplem3.s |  | 
						
							| 4 |  | smfsuplem3.f |  | 
						
							| 5 |  | smfsuplem3.d |  | 
						
							| 6 |  | smfsuplem3.g |  | 
						
							| 7 |  | nfv |  | 
						
							| 8 |  | ssrab2 |  | 
						
							| 9 | 5 8 | eqsstri |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | uzid |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 12 2 | eleqtrrdi |  | 
						
							| 14 |  | fveq2 |  | 
						
							| 15 | 14 | dmeqd |  | 
						
							| 16 | 4 13 | ffvelcdmd |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 3 16 17 | smfdmss |  | 
						
							| 19 | 13 15 18 | iinssd |  | 
						
							| 20 | 10 19 | sstrd |  | 
						
							| 21 |  | nfv |  | 
						
							| 22 | 13 | ne0d |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 3 | adantr |  | 
						
							| 25 | 4 | ffvelcdmda |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 24 25 26 | smff |  | 
						
							| 28 | 27 | adantlr |  | 
						
							| 29 |  | iinss2 |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 9 | sseli |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 30 32 | sseldd |  | 
						
							| 34 | 33 | adantll |  | 
						
							| 35 | 28 34 | ffvelcdmd |  | 
						
							| 36 | 5 | reqabi |  | 
						
							| 37 | 36 | simprbi |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 21 23 35 38 | suprclrnmpt |  | 
						
							| 40 | 39 6 | fmptd |  | 
						
							| 41 | 1 | adantr |  | 
						
							| 42 | 3 | adantr |  | 
						
							| 43 | 4 | adantr |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 41 2 42 43 5 6 44 | smfsuplem2 |  | 
						
							| 46 | 7 3 20 40 45 | issmfle2d |  |