Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfsuplem3.m | |
|
smfsuplem3.z | |
||
smfsuplem3.s | |
||
smfsuplem3.f | |
||
smfsuplem3.d | |
||
smfsuplem3.g | |
||
Assertion | smfsuplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfsuplem3.m | |
|
2 | smfsuplem3.z | |
|
3 | smfsuplem3.s | |
|
4 | smfsuplem3.f | |
|
5 | smfsuplem3.d | |
|
6 | smfsuplem3.g | |
|
7 | nfv | |
|
8 | ssrab2 | |
|
9 | 5 8 | eqsstri | |
10 | 9 | a1i | |
11 | uzid | |
|
12 | 1 11 | syl | |
13 | 12 2 | eleqtrrdi | |
14 | fveq2 | |
|
15 | 14 | dmeqd | |
16 | 4 13 | ffvelcdmd | |
17 | eqid | |
|
18 | 3 16 17 | smfdmss | |
19 | 13 15 18 | iinssd | |
20 | 10 19 | sstrd | |
21 | nfv | |
|
22 | 13 | ne0d | |
23 | 22 | adantr | |
24 | 3 | adantr | |
25 | 4 | ffvelcdmda | |
26 | eqid | |
|
27 | 24 25 26 | smff | |
28 | 27 | adantlr | |
29 | iinss2 | |
|
30 | 29 | adantl | |
31 | 9 | sseli | |
32 | 31 | adantr | |
33 | 30 32 | sseldd | |
34 | 33 | adantll | |
35 | 28 34 | ffvelcdmd | |
36 | 5 | reqabi | |
37 | 36 | simprbi | |
38 | 37 | adantl | |
39 | 21 23 35 38 | suprclrnmpt | |
40 | 39 6 | fmptd | |
41 | 1 | adantr | |
42 | 3 | adantr | |
43 | 4 | adantr | |
44 | simpr | |
|
45 | 41 2 42 43 5 6 44 | smfsuplem2 | |
46 | 7 3 20 40 45 | issmfle2d | |