Metamath Proof Explorer


Theorem smfsuplem3

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsuplem3.m ( 𝜑𝑀 ∈ ℤ )
smfsuplem3.z 𝑍 = ( ℤ𝑀 )
smfsuplem3.s ( 𝜑𝑆 ∈ SAlg )
smfsuplem3.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfsuplem3.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
smfsuplem3.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
Assertion smfsuplem3 ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfsuplem3.m ( 𝜑𝑀 ∈ ℤ )
2 smfsuplem3.z 𝑍 = ( ℤ𝑀 )
3 smfsuplem3.s ( 𝜑𝑆 ∈ SAlg )
4 smfsuplem3.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
5 smfsuplem3.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
6 smfsuplem3.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
7 nfv 𝑎 𝜑
8 ssrab2 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ 𝑛𝑍 dom ( 𝐹𝑛 )
9 5 8 eqsstri 𝐷 𝑛𝑍 dom ( 𝐹𝑛 )
10 9 a1i ( 𝜑𝐷 𝑛𝑍 dom ( 𝐹𝑛 ) )
11 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
12 1 11 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
13 12 2 eleqtrrdi ( 𝜑𝑀𝑍 )
14 fveq2 ( 𝑛 = 𝑀 → ( 𝐹𝑛 ) = ( 𝐹𝑀 ) )
15 14 dmeqd ( 𝑛 = 𝑀 → dom ( 𝐹𝑛 ) = dom ( 𝐹𝑀 ) )
16 4 13 ffvelrnd ( 𝜑 → ( 𝐹𝑀 ) ∈ ( SMblFn ‘ 𝑆 ) )
17 eqid dom ( 𝐹𝑀 ) = dom ( 𝐹𝑀 )
18 3 16 17 smfdmss ( 𝜑 → dom ( 𝐹𝑀 ) ⊆ 𝑆 )
19 13 15 18 iinssd ( 𝜑 𝑛𝑍 dom ( 𝐹𝑛 ) ⊆ 𝑆 )
20 10 19 sstrd ( 𝜑𝐷 𝑆 )
21 nfv 𝑛 ( 𝜑𝑥𝐷 )
22 13 ne0d ( 𝜑𝑍 ≠ ∅ )
23 22 adantr ( ( 𝜑𝑥𝐷 ) → 𝑍 ≠ ∅ )
24 3 adantr ( ( 𝜑𝑛𝑍 ) → 𝑆 ∈ SAlg )
25 4 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) )
26 eqid dom ( 𝐹𝑛 ) = dom ( 𝐹𝑛 )
27 24 25 26 smff ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
28 27 adantlr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
29 iinss2 ( 𝑛𝑍 𝑛𝑍 dom ( 𝐹𝑛 ) ⊆ dom ( 𝐹𝑛 ) )
30 29 adantl ( ( 𝑥𝐷𝑛𝑍 ) → 𝑛𝑍 dom ( 𝐹𝑛 ) ⊆ dom ( 𝐹𝑛 ) )
31 9 sseli ( 𝑥𝐷𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
32 31 adantr ( ( 𝑥𝐷𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
33 30 32 sseldd ( ( 𝑥𝐷𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
34 33 adantll ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
35 28 34 ffvelrnd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
36 5 rabeq2i ( 𝑥𝐷 ↔ ( 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) )
37 36 simprbi ( 𝑥𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
38 37 adantl ( ( 𝜑𝑥𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
39 21 23 35 38 suprclrnmpt ( ( 𝜑𝑥𝐷 ) → sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ )
40 39 6 fmptd ( 𝜑𝐺 : 𝐷 ⟶ ℝ )
41 1 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑀 ∈ ℤ )
42 3 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg )
43 4 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
44 simpr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ )
45 41 2 42 43 5 6 44 smfsuplem2 ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐺 “ ( -∞ (,] 𝑎 ) ) ∈ ( 𝑆t 𝐷 ) )
46 7 3 20 40 45 issmfle2d ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )