Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smfsuplem3.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smfsuplem3.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfsuplem3.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfsuplem3.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
6 |
|
smfsuplem3.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
8 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
9 |
5 8
|
eqsstri |
⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
11 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
13 |
12 2
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
14 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑀 ) ) |
15 |
14
|
dmeqd |
⊢ ( 𝑛 = 𝑀 → dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑀 ) ) |
16 |
4 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
17 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑀 ) = dom ( 𝐹 ‘ 𝑀 ) |
18 |
3 16 17
|
smfdmss |
⊢ ( 𝜑 → dom ( 𝐹 ‘ 𝑀 ) ⊆ ∪ 𝑆 ) |
19 |
13 15 18
|
iinssd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ ∪ 𝑆 ) |
20 |
10 19
|
sstrd |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
21 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
22 |
13
|
ne0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ≠ ∅ ) |
24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
25 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
26 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
27 |
24 25 26
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
29 |
|
iinss2 |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ⊆ dom ( 𝐹 ‘ 𝑛 ) ) |
31 |
9
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
33 |
30 32
|
sseldd |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
34 |
33
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
35 |
28 34
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
36 |
5
|
rabeq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
37 |
36
|
simprbi |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
39 |
21 23 35 38
|
suprclrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
40 |
39 6
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℝ ) |
41 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
43 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
45 |
41 2 42 43 5 6 44
|
smfsuplem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐺 “ ( -∞ (,] 𝑎 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
46 |
7 3 20 40 45
|
issmfle2d |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |