| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem3.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smfsuplem3.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smfsuplem3.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfsuplem3.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfsuplem3.d | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 6 |  | smfsuplem3.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 9 | 5 8 | eqsstri | ⊢ 𝐷  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  𝐷  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 11 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 13 | 12 2 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 15 | 14 | dmeqd | ⊢ ( 𝑛  =  𝑀  →  dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 16 | 4 13 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 17 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑀 )  =  dom  ( 𝐹 ‘ 𝑀 ) | 
						
							| 18 | 3 16 17 | smfdmss | ⊢ ( 𝜑  →  dom  ( 𝐹 ‘ 𝑀 )  ⊆  ∪  𝑆 ) | 
						
							| 19 | 13 15 18 | iinssd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ⊆  ∪  𝑆 ) | 
						
							| 20 | 10 19 | sstrd | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 21 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝐷 ) | 
						
							| 22 | 13 | ne0d | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑍  ≠  ∅ ) | 
						
							| 24 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 25 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 26 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 27 | 24 25 26 | smff | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 29 |  | iinss2 | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ⊆  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ⊆  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 31 | 9 | sseli | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 33 | 30 32 | sseldd | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 34 | 33 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 35 | 28 34 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 36 | 5 | reqabi | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 37 | 36 | simprbi | ⊢ ( 𝑥  ∈  𝐷  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 39 | 21 23 35 38 | suprclrnmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 40 | 39 6 | fmptd | ⊢ ( 𝜑  →  𝐺 : 𝐷 ⟶ ℝ ) | 
						
							| 41 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 42 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 43 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 45 | 41 2 42 43 5 6 44 | smfsuplem2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐺  “  ( -∞ (,] 𝑎 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 46 | 7 3 20 40 45 | issmfle2d | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |