Metamath Proof Explorer


Theorem smfsup

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsup.n 𝑛 𝐹
smfsup.x 𝑥 𝐹
smfsup.m ( 𝜑𝑀 ∈ ℤ )
smfsup.z 𝑍 = ( ℤ𝑀 )
smfsup.s ( 𝜑𝑆 ∈ SAlg )
smfsup.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfsup.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
smfsup.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
Assertion smfsup ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfsup.n 𝑛 𝐹
2 smfsup.x 𝑥 𝐹
3 smfsup.m ( 𝜑𝑀 ∈ ℤ )
4 smfsup.z 𝑍 = ( ℤ𝑀 )
5 smfsup.s ( 𝜑𝑆 ∈ SAlg )
6 smfsup.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smfsup.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
8 smfsup.g 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
9 nfcv 𝑤 𝑛𝑍 dom ( 𝐹𝑛 )
10 nfcv 𝑥 𝑍
11 nfcv 𝑥 𝑚
12 2 11 nffv 𝑥 ( 𝐹𝑚 )
13 12 nfdm 𝑥 dom ( 𝐹𝑚 )
14 10 13 nfiin 𝑥 𝑚𝑍 dom ( 𝐹𝑚 )
15 nfv 𝑤𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦
16 nfcv 𝑥
17 nfcv 𝑥 𝑤
18 12 17 nffv 𝑥 ( ( 𝐹𝑚 ) ‘ 𝑤 )
19 nfcv 𝑥
20 nfcv 𝑥 𝑧
21 18 19 20 nfbr 𝑥 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧
22 10 21 nfralw 𝑥𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧
23 16 22 nfrex 𝑥𝑧 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧
24 nfcv 𝑚 dom ( 𝐹𝑛 )
25 nfcv 𝑛 𝑚
26 1 25 nffv 𝑛 ( 𝐹𝑚 )
27 26 nfdm 𝑛 dom ( 𝐹𝑚 )
28 fveq2 ( 𝑛 = 𝑚 → ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
29 28 dmeqd ( 𝑛 = 𝑚 → dom ( 𝐹𝑛 ) = dom ( 𝐹𝑚 ) )
30 24 27 29 cbviin 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 )
31 30 a1i ( 𝑥 = 𝑤 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 ) )
32 fveq2 ( 𝑥 = 𝑤 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑤 ) )
33 32 breq1d ( 𝑥 = 𝑤 → ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) )
34 33 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) )
35 nfv 𝑚 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦
36 nfcv 𝑛 𝑤
37 26 36 nffv 𝑛 ( ( 𝐹𝑚 ) ‘ 𝑤 )
38 nfcv 𝑛
39 nfcv 𝑛 𝑦
40 37 38 39 nfbr 𝑛 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦
41 28 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐹𝑛 ) ‘ 𝑤 ) = ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
42 41 breq1d ( 𝑛 = 𝑚 → ( ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
43 35 40 42 cbvralw ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 )
44 43 a1i ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
45 34 44 bitrd ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
46 45 rexbidv ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) )
47 breq2 ( 𝑦 = 𝑧 → ( ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) )
48 47 ralbidv ( 𝑦 = 𝑧 → ( ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) )
49 48 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 )
50 49 a1i ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) )
51 46 50 bitrd ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) )
52 9 14 15 23 31 51 cbvrabcsfw { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 }
53 7 52 eqtri 𝐷 = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 ( ( 𝐹𝑚 ) ‘ 𝑤 ) ≤ 𝑧 }
54 nfrab1 𝑥 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
55 7 54 nfcxfr 𝑥 𝐷
56 nfcv 𝑤 𝐷
57 nfcv 𝑤 sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < )
58 10 18 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
59 58 nfrn 𝑥 ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
60 nfcv 𝑥 <
61 59 16 60 nfsup 𝑥 sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < )
62 32 mpteq2dv ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
63 nfcv 𝑚 ( ( 𝐹𝑛 ) ‘ 𝑤 )
64 63 37 41 cbvmpt ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
65 64 a1i ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
66 62 65 eqtrd ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
67 66 rneqd ( 𝑥 = 𝑤 → ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
68 67 supeq1d ( 𝑥 = 𝑤 → sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
69 55 56 57 61 68 cbvmptf ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑤𝐷 ↦ sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
70 8 69 eqtri 𝐺 = ( 𝑤𝐷 ↦ sup ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
71 3 4 5 6 53 70 smfsuplem3 ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )