Step |
Hyp |
Ref |
Expression |
1 |
|
smfsup.n |
⊢ Ⅎ 𝑛 𝐹 |
2 |
|
smfsup.x |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
smfsup.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
smfsup.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
smfsup.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
6 |
|
smfsup.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
smfsup.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
8 |
|
smfsup.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑤 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
12 |
2 11
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
13 |
12
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
14 |
10 13
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
18 |
12 17
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
21 |
18 19 20
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 |
22 |
10 21
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 |
23 |
16 22
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 |
24 |
|
nfcv |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑛 ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑚 |
26 |
1 25
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
27 |
26
|
nfdm |
⊢ Ⅎ 𝑛 dom ( 𝐹 ‘ 𝑚 ) |
28 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
29 |
28
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
30 |
24 27 29
|
cbviin |
⊢ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
31 |
30
|
a1i |
⊢ ( 𝑥 = 𝑤 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
34 |
33
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
35 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 |
36 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑤 |
37 |
26 36
|
nffv |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
39 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
40 |
37 38 39
|
nfbr |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 |
41 |
28
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
42 |
41
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
43 |
35 40 42
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) |
44 |
43
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
45 |
34 44
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
47 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) ) |
48 |
47
|
ralbidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) ) |
49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) |
50 |
49
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) ) |
51 |
46 50
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 ) ) |
52 |
9 14 15 23 31 51
|
cbvrabcsfw |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 } |
53 |
7 52
|
eqtri |
⊢ 𝐷 = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ≤ 𝑧 } |
54 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
55 |
7 54
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
56 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐷 |
57 |
|
nfcv |
⊢ Ⅎ 𝑤 sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) |
58 |
10 18
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
59 |
58
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
61 |
59 16 60
|
nfsup |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) |
62 |
32
|
mpteq2dv |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
63 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) |
64 |
63 37 41
|
cbvmpt |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
65 |
64
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
66 |
62 65
|
eqtrd |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
67 |
66
|
rneqd |
⊢ ( 𝑥 = 𝑤 → ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
68 |
67
|
supeq1d |
⊢ ( 𝑥 = 𝑤 → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
69 |
55 56 57 61 68
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑤 ∈ 𝐷 ↦ sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
70 |
8 69
|
eqtri |
⊢ 𝐺 = ( 𝑤 ∈ 𝐷 ↦ sup ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
71 |
3 4 5 6 53 70
|
smfsuplem3 |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |