| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsup.n |  |-  F/_ n F | 
						
							| 2 |  | smfsup.x |  |-  F/_ x F | 
						
							| 3 |  | smfsup.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | smfsup.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | smfsup.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 |  | smfsup.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 7 |  | smfsup.d |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 8 |  | smfsup.g |  |-  G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 9 |  | nfcv |  |-  F/_ w |^|_ n e. Z dom ( F ` n ) | 
						
							| 10 |  | nfcv |  |-  F/_ x Z | 
						
							| 11 |  | nfcv |  |-  F/_ x m | 
						
							| 12 | 2 11 | nffv |  |-  F/_ x ( F ` m ) | 
						
							| 13 | 12 | nfdm |  |-  F/_ x dom ( F ` m ) | 
						
							| 14 | 10 13 | nfiin |  |-  F/_ x |^|_ m e. Z dom ( F ` m ) | 
						
							| 15 |  | nfv |  |-  F/ w E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y | 
						
							| 16 |  | nfcv |  |-  F/_ x RR | 
						
							| 17 |  | nfcv |  |-  F/_ x w | 
						
							| 18 | 12 17 | nffv |  |-  F/_ x ( ( F ` m ) ` w ) | 
						
							| 19 |  | nfcv |  |-  F/_ x <_ | 
						
							| 20 |  | nfcv |  |-  F/_ x z | 
						
							| 21 | 18 19 20 | nfbr |  |-  F/ x ( ( F ` m ) ` w ) <_ z | 
						
							| 22 | 10 21 | nfralw |  |-  F/ x A. m e. Z ( ( F ` m ) ` w ) <_ z | 
						
							| 23 | 16 22 | nfrexw |  |-  F/ x E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z | 
						
							| 24 |  | nfcv |  |-  F/_ m dom ( F ` n ) | 
						
							| 25 |  | nfcv |  |-  F/_ n m | 
						
							| 26 | 1 25 | nffv |  |-  F/_ n ( F ` m ) | 
						
							| 27 | 26 | nfdm |  |-  F/_ n dom ( F ` m ) | 
						
							| 28 |  | fveq2 |  |-  ( n = m -> ( F ` n ) = ( F ` m ) ) | 
						
							| 29 | 28 | dmeqd |  |-  ( n = m -> dom ( F ` n ) = dom ( F ` m ) ) | 
						
							| 30 | 24 27 29 | cbviin |  |-  |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) | 
						
							| 31 | 30 | a1i |  |-  ( x = w -> |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) ) | 
						
							| 32 |  | fveq2 |  |-  ( x = w -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` w ) ) | 
						
							| 33 | 32 | breq1d |  |-  ( x = w -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` n ) ` w ) <_ y ) ) | 
						
							| 34 | 33 | ralbidv |  |-  ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. n e. Z ( ( F ` n ) ` w ) <_ y ) ) | 
						
							| 35 |  | nfv |  |-  F/ m ( ( F ` n ) ` w ) <_ y | 
						
							| 36 |  | nfcv |  |-  F/_ n w | 
						
							| 37 | 26 36 | nffv |  |-  F/_ n ( ( F ` m ) ` w ) | 
						
							| 38 |  | nfcv |  |-  F/_ n <_ | 
						
							| 39 |  | nfcv |  |-  F/_ n y | 
						
							| 40 | 37 38 39 | nfbr |  |-  F/ n ( ( F ` m ) ` w ) <_ y | 
						
							| 41 | 28 | fveq1d |  |-  ( n = m -> ( ( F ` n ) ` w ) = ( ( F ` m ) ` w ) ) | 
						
							| 42 | 41 | breq1d |  |-  ( n = m -> ( ( ( F ` n ) ` w ) <_ y <-> ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 43 | 35 40 42 | cbvralw |  |-  ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) | 
						
							| 44 | 43 | a1i |  |-  ( x = w -> ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 45 | 34 44 | bitrd |  |-  ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 46 | 45 | rexbidv |  |-  ( x = w -> ( E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y <-> E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) | 
						
							| 47 |  | breq2 |  |-  ( y = z -> ( ( ( F ` m ) ` w ) <_ y <-> ( ( F ` m ) ` w ) <_ z ) ) | 
						
							| 48 | 47 | ralbidv |  |-  ( y = z -> ( A. m e. Z ( ( F ` m ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ z ) ) | 
						
							| 49 | 48 | cbvrexvw |  |-  ( E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y <-> E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z ) | 
						
							| 50 | 49 | a1i |  |-  ( x = w -> ( E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y <-> E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z ) ) | 
						
							| 51 | 46 50 | bitrd |  |-  ( x = w -> ( E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y <-> E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z ) ) | 
						
							| 52 | 9 14 15 23 31 51 | cbvrabcsfw |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { w e. |^|_ m e. Z dom ( F ` m ) | E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z } | 
						
							| 53 | 7 52 | eqtri |  |-  D = { w e. |^|_ m e. Z dom ( F ` m ) | E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z } | 
						
							| 54 |  | nfrab1 |  |-  F/_ x { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 55 | 7 54 | nfcxfr |  |-  F/_ x D | 
						
							| 56 |  | nfcv |  |-  F/_ w D | 
						
							| 57 |  | nfcv |  |-  F/_ w sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) | 
						
							| 58 | 10 18 | nfmpt |  |-  F/_ x ( m e. Z |-> ( ( F ` m ) ` w ) ) | 
						
							| 59 | 58 | nfrn |  |-  F/_ x ran ( m e. Z |-> ( ( F ` m ) ` w ) ) | 
						
							| 60 |  | nfcv |  |-  F/_ x < | 
						
							| 61 | 59 16 60 | nfsup |  |-  F/_ x sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) | 
						
							| 62 | 32 | mpteq2dv |  |-  ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( n e. Z |-> ( ( F ` n ) ` w ) ) ) | 
						
							| 63 |  | nfcv |  |-  F/_ m ( ( F ` n ) ` w ) | 
						
							| 64 | 63 37 41 | cbvmpt |  |-  ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) | 
						
							| 65 | 64 | a1i |  |-  ( x = w -> ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) | 
						
							| 66 | 62 65 | eqtrd |  |-  ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) | 
						
							| 67 | 66 | rneqd |  |-  ( x = w -> ran ( n e. Z |-> ( ( F ` n ) ` x ) ) = ran ( m e. Z |-> ( ( F ` m ) ` w ) ) ) | 
						
							| 68 | 67 | supeq1d |  |-  ( x = w -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) | 
						
							| 69 | 55 56 57 61 68 | cbvmptf |  |-  ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) | 
						
							| 70 | 8 69 | eqtri |  |-  G = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) | 
						
							| 71 | 3 4 5 6 53 70 | smfsuplem3 |  |-  ( ph -> G e. ( SMblFn ` S ) ) |