Step |
Hyp |
Ref |
Expression |
1 |
|
smfsup.n |
|- F/_ n F |
2 |
|
smfsup.x |
|- F/_ x F |
3 |
|
smfsup.m |
|- ( ph -> M e. ZZ ) |
4 |
|
smfsup.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
smfsup.s |
|- ( ph -> S e. SAlg ) |
6 |
|
smfsup.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
7 |
|
smfsup.d |
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
8 |
|
smfsup.g |
|- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
9 |
|
nfcv |
|- F/_ w |^|_ n e. Z dom ( F ` n ) |
10 |
|
nfcv |
|- F/_ x Z |
11 |
|
nfcv |
|- F/_ x m |
12 |
2 11
|
nffv |
|- F/_ x ( F ` m ) |
13 |
12
|
nfdm |
|- F/_ x dom ( F ` m ) |
14 |
10 13
|
nfiin |
|- F/_ x |^|_ m e. Z dom ( F ` m ) |
15 |
|
nfv |
|- F/ w E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y |
16 |
|
nfcv |
|- F/_ x RR |
17 |
|
nfcv |
|- F/_ x w |
18 |
12 17
|
nffv |
|- F/_ x ( ( F ` m ) ` w ) |
19 |
|
nfcv |
|- F/_ x <_ |
20 |
|
nfcv |
|- F/_ x z |
21 |
18 19 20
|
nfbr |
|- F/ x ( ( F ` m ) ` w ) <_ z |
22 |
10 21
|
nfralw |
|- F/ x A. m e. Z ( ( F ` m ) ` w ) <_ z |
23 |
16 22
|
nfrex |
|- F/ x E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z |
24 |
|
nfcv |
|- F/_ m dom ( F ` n ) |
25 |
|
nfcv |
|- F/_ n m |
26 |
1 25
|
nffv |
|- F/_ n ( F ` m ) |
27 |
26
|
nfdm |
|- F/_ n dom ( F ` m ) |
28 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
29 |
28
|
dmeqd |
|- ( n = m -> dom ( F ` n ) = dom ( F ` m ) ) |
30 |
24 27 29
|
cbviin |
|- |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) |
31 |
30
|
a1i |
|- ( x = w -> |^|_ n e. Z dom ( F ` n ) = |^|_ m e. Z dom ( F ` m ) ) |
32 |
|
fveq2 |
|- ( x = w -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` w ) ) |
33 |
32
|
breq1d |
|- ( x = w -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` n ) ` w ) <_ y ) ) |
34 |
33
|
ralbidv |
|- ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. n e. Z ( ( F ` n ) ` w ) <_ y ) ) |
35 |
|
nfv |
|- F/ m ( ( F ` n ) ` w ) <_ y |
36 |
|
nfcv |
|- F/_ n w |
37 |
26 36
|
nffv |
|- F/_ n ( ( F ` m ) ` w ) |
38 |
|
nfcv |
|- F/_ n <_ |
39 |
|
nfcv |
|- F/_ n y |
40 |
37 38 39
|
nfbr |
|- F/ n ( ( F ` m ) ` w ) <_ y |
41 |
28
|
fveq1d |
|- ( n = m -> ( ( F ` n ) ` w ) = ( ( F ` m ) ` w ) ) |
42 |
41
|
breq1d |
|- ( n = m -> ( ( ( F ` n ) ` w ) <_ y <-> ( ( F ` m ) ` w ) <_ y ) ) |
43 |
35 40 42
|
cbvralw |
|- ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) |
44 |
43
|
a1i |
|- ( x = w -> ( A. n e. Z ( ( F ` n ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) |
45 |
34 44
|
bitrd |
|- ( x = w -> ( A. n e. Z ( ( F ` n ) ` x ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) |
46 |
45
|
rexbidv |
|- ( x = w -> ( E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y <-> E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y ) ) |
47 |
|
breq2 |
|- ( y = z -> ( ( ( F ` m ) ` w ) <_ y <-> ( ( F ` m ) ` w ) <_ z ) ) |
48 |
47
|
ralbidv |
|- ( y = z -> ( A. m e. Z ( ( F ` m ) ` w ) <_ y <-> A. m e. Z ( ( F ` m ) ` w ) <_ z ) ) |
49 |
48
|
cbvrexvw |
|- ( E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y <-> E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z ) |
50 |
49
|
a1i |
|- ( x = w -> ( E. y e. RR A. m e. Z ( ( F ` m ) ` w ) <_ y <-> E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z ) ) |
51 |
46 50
|
bitrd |
|- ( x = w -> ( E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y <-> E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z ) ) |
52 |
9 14 15 23 31 51
|
cbvrabcsfw |
|- { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { w e. |^|_ m e. Z dom ( F ` m ) | E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z } |
53 |
7 52
|
eqtri |
|- D = { w e. |^|_ m e. Z dom ( F ` m ) | E. z e. RR A. m e. Z ( ( F ` m ) ` w ) <_ z } |
54 |
|
nfrab1 |
|- F/_ x { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
55 |
7 54
|
nfcxfr |
|- F/_ x D |
56 |
|
nfcv |
|- F/_ w D |
57 |
|
nfcv |
|- F/_ w sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) |
58 |
10 18
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` w ) ) |
59 |
58
|
nfrn |
|- F/_ x ran ( m e. Z |-> ( ( F ` m ) ` w ) ) |
60 |
|
nfcv |
|- F/_ x < |
61 |
59 16 60
|
nfsup |
|- F/_ x sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) |
62 |
32
|
mpteq2dv |
|- ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( n e. Z |-> ( ( F ` n ) ` w ) ) ) |
63 |
|
nfcv |
|- F/_ m ( ( F ` n ) ` w ) |
64 |
63 37 41
|
cbvmpt |
|- ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) |
65 |
64
|
a1i |
|- ( x = w -> ( n e. Z |-> ( ( F ` n ) ` w ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) |
66 |
62 65
|
eqtrd |
|- ( x = w -> ( n e. Z |-> ( ( F ` n ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` w ) ) ) |
67 |
66
|
rneqd |
|- ( x = w -> ran ( n e. Z |-> ( ( F ` n ) ` x ) ) = ran ( m e. Z |-> ( ( F ` m ) ` w ) ) ) |
68 |
67
|
supeq1d |
|- ( x = w -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) |
69 |
55 56 57 61 68
|
cbvmptf |
|- ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) |
70 |
8 69
|
eqtri |
|- G = ( w e. D |-> sup ( ran ( m e. Z |-> ( ( F ` m ) ` w ) ) , RR , < ) ) |
71 |
3 4 5 6 53 70
|
smfsuplem3 |
|- ( ph -> G e. ( SMblFn ` S ) ) |