| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsuplem3.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smfsuplem3.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smfsuplem3.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfsuplem3.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smfsuplem3.d |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 6 |  | smfsuplem3.g |  |-  G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 7 |  | nfv |  |-  F/ a ph | 
						
							| 8 |  | ssrab2 |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } C_ |^|_ n e. Z dom ( F ` n ) | 
						
							| 9 | 5 8 | eqsstri |  |-  D C_ |^|_ n e. Z dom ( F ` n ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> D C_ |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 11 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> M e. ( ZZ>= ` M ) ) | 
						
							| 13 | 12 2 | eleqtrrdi |  |-  ( ph -> M e. Z ) | 
						
							| 14 |  | fveq2 |  |-  ( n = M -> ( F ` n ) = ( F ` M ) ) | 
						
							| 15 | 14 | dmeqd |  |-  ( n = M -> dom ( F ` n ) = dom ( F ` M ) ) | 
						
							| 16 | 4 13 | ffvelcdmd |  |-  ( ph -> ( F ` M ) e. ( SMblFn ` S ) ) | 
						
							| 17 |  | eqid |  |-  dom ( F ` M ) = dom ( F ` M ) | 
						
							| 18 | 3 16 17 | smfdmss |  |-  ( ph -> dom ( F ` M ) C_ U. S ) | 
						
							| 19 | 13 15 18 | iinssd |  |-  ( ph -> |^|_ n e. Z dom ( F ` n ) C_ U. S ) | 
						
							| 20 | 10 19 | sstrd |  |-  ( ph -> D C_ U. S ) | 
						
							| 21 |  | nfv |  |-  F/ n ( ph /\ x e. D ) | 
						
							| 22 | 13 | ne0d |  |-  ( ph -> Z =/= (/) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ x e. D ) -> Z =/= (/) ) | 
						
							| 24 | 3 | adantr |  |-  ( ( ph /\ n e. Z ) -> S e. SAlg ) | 
						
							| 25 | 4 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) | 
						
							| 26 |  | eqid |  |-  dom ( F ` n ) = dom ( F ` n ) | 
						
							| 27 | 24 25 26 | smff |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 28 | 27 | adantlr |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 29 |  | iinss2 |  |-  ( n e. Z -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( x e. D /\ n e. Z ) -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) | 
						
							| 31 | 9 | sseli |  |-  ( x e. D -> x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( x e. D /\ n e. Z ) -> x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 33 | 30 32 | sseldd |  |-  ( ( x e. D /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 34 | 33 | adantll |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 35 | 28 34 | ffvelcdmd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 36 | 5 | reqabi |  |-  ( x e. D <-> ( x e. |^|_ n e. Z dom ( F ` n ) /\ E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) | 
						
							| 37 | 36 | simprbi |  |-  ( x e. D -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ x e. D ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) | 
						
							| 39 | 21 23 35 38 | suprclrnmpt |  |-  ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) | 
						
							| 40 | 39 6 | fmptd |  |-  ( ph -> G : D --> RR ) | 
						
							| 41 | 1 | adantr |  |-  ( ( ph /\ a e. RR ) -> M e. ZZ ) | 
						
							| 42 | 3 | adantr |  |-  ( ( ph /\ a e. RR ) -> S e. SAlg ) | 
						
							| 43 | 4 | adantr |  |-  ( ( ph /\ a e. RR ) -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ a e. RR ) -> a e. RR ) | 
						
							| 45 | 41 2 42 43 5 6 44 | smfsuplem2 |  |-  ( ( ph /\ a e. RR ) -> ( `' G " ( -oo (,] a ) ) e. ( S |`t D ) ) | 
						
							| 46 | 7 3 20 40 45 | issmfle2d |  |-  ( ph -> G e. ( SMblFn ` S ) ) |