Step |
Hyp |
Ref |
Expression |
1 |
|
smfsuplem3.m |
|- ( ph -> M e. ZZ ) |
2 |
|
smfsuplem3.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
smfsuplem3.s |
|- ( ph -> S e. SAlg ) |
4 |
|
smfsuplem3.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
5 |
|
smfsuplem3.d |
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
6 |
|
smfsuplem3.g |
|- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
7 |
|
nfv |
|- F/ a ph |
8 |
|
ssrab2 |
|- { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } C_ |^|_ n e. Z dom ( F ` n ) |
9 |
5 8
|
eqsstri |
|- D C_ |^|_ n e. Z dom ( F ` n ) |
10 |
9
|
a1i |
|- ( ph -> D C_ |^|_ n e. Z dom ( F ` n ) ) |
11 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
12 |
1 11
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
13 |
12 2
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
14 |
|
fveq2 |
|- ( n = M -> ( F ` n ) = ( F ` M ) ) |
15 |
14
|
dmeqd |
|- ( n = M -> dom ( F ` n ) = dom ( F ` M ) ) |
16 |
4 13
|
ffvelrnd |
|- ( ph -> ( F ` M ) e. ( SMblFn ` S ) ) |
17 |
|
eqid |
|- dom ( F ` M ) = dom ( F ` M ) |
18 |
3 16 17
|
smfdmss |
|- ( ph -> dom ( F ` M ) C_ U. S ) |
19 |
13 15 18
|
iinssd |
|- ( ph -> |^|_ n e. Z dom ( F ` n ) C_ U. S ) |
20 |
10 19
|
sstrd |
|- ( ph -> D C_ U. S ) |
21 |
|
nfv |
|- F/ n ( ph /\ x e. D ) |
22 |
13
|
ne0d |
|- ( ph -> Z =/= (/) ) |
23 |
22
|
adantr |
|- ( ( ph /\ x e. D ) -> Z =/= (/) ) |
24 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
25 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
26 |
|
eqid |
|- dom ( F ` n ) = dom ( F ` n ) |
27 |
24 25 26
|
smff |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
28 |
27
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
29 |
|
iinss2 |
|- ( n e. Z -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) |
30 |
29
|
adantl |
|- ( ( x e. D /\ n e. Z ) -> |^|_ n e. Z dom ( F ` n ) C_ dom ( F ` n ) ) |
31 |
9
|
sseli |
|- ( x e. D -> x e. |^|_ n e. Z dom ( F ` n ) ) |
32 |
31
|
adantr |
|- ( ( x e. D /\ n e. Z ) -> x e. |^|_ n e. Z dom ( F ` n ) ) |
33 |
30 32
|
sseldd |
|- ( ( x e. D /\ n e. Z ) -> x e. dom ( F ` n ) ) |
34 |
33
|
adantll |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> x e. dom ( F ` n ) ) |
35 |
28 34
|
ffvelrnd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) |
36 |
5
|
rabeq2i |
|- ( x e. D <-> ( x e. |^|_ n e. Z dom ( F ` n ) /\ E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) |
37 |
36
|
simprbi |
|- ( x e. D -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) |
38 |
37
|
adantl |
|- ( ( ph /\ x e. D ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) |
39 |
21 23 35 38
|
suprclrnmpt |
|- ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
40 |
39 6
|
fmptd |
|- ( ph -> G : D --> RR ) |
41 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> M e. ZZ ) |
42 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
43 |
4
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : Z --> ( SMblFn ` S ) ) |
44 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
45 |
41 2 42 43 5 6 44
|
smfsuplem2 |
|- ( ( ph /\ a e. RR ) -> ( `' G " ( -oo (,] a ) ) e. ( S |`t D ) ) |
46 |
7 3 20 40 45
|
issmfle2d |
|- ( ph -> G e. ( SMblFn ` S ) ) |