Metamath Proof Explorer


Theorem smfsup

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsup.n _nF
smfsup.x _xF
smfsup.m φM
smfsup.z Z=M
smfsup.s φSSAlg
smfsup.f φF:ZSMblFnS
smfsup.d D=xnZdomFn|ynZFnxy
smfsup.g G=xDsuprannZFnx<
Assertion smfsup φGSMblFnS

Proof

Step Hyp Ref Expression
1 smfsup.n _nF
2 smfsup.x _xF
3 smfsup.m φM
4 smfsup.z Z=M
5 smfsup.s φSSAlg
6 smfsup.f φF:ZSMblFnS
7 smfsup.d D=xnZdomFn|ynZFnxy
8 smfsup.g G=xDsuprannZFnx<
9 nfcv _wnZdomFn
10 nfcv _xZ
11 nfcv _xm
12 2 11 nffv _xFm
13 12 nfdm _xdomFm
14 10 13 nfiin _xmZdomFm
15 nfv wynZFnxy
16 nfcv _x
17 nfcv _xw
18 12 17 nffv _xFmw
19 nfcv _x
20 nfcv _xz
21 18 19 20 nfbr xFmwz
22 10 21 nfralw xmZFmwz
23 16 22 nfrexw xzmZFmwz
24 nfcv _mdomFn
25 nfcv _nm
26 1 25 nffv _nFm
27 26 nfdm _ndomFm
28 fveq2 n=mFn=Fm
29 28 dmeqd n=mdomFn=domFm
30 24 27 29 cbviin nZdomFn=mZdomFm
31 30 a1i x=wnZdomFn=mZdomFm
32 fveq2 x=wFnx=Fnw
33 32 breq1d x=wFnxyFnwy
34 33 ralbidv x=wnZFnxynZFnwy
35 nfv mFnwy
36 nfcv _nw
37 26 36 nffv _nFmw
38 nfcv _n
39 nfcv _ny
40 37 38 39 nfbr nFmwy
41 28 fveq1d n=mFnw=Fmw
42 41 breq1d n=mFnwyFmwy
43 35 40 42 cbvralw nZFnwymZFmwy
44 43 a1i x=wnZFnwymZFmwy
45 34 44 bitrd x=wnZFnxymZFmwy
46 45 rexbidv x=wynZFnxyymZFmwy
47 breq2 y=zFmwyFmwz
48 47 ralbidv y=zmZFmwymZFmwz
49 48 cbvrexvw ymZFmwyzmZFmwz
50 49 a1i x=wymZFmwyzmZFmwz
51 46 50 bitrd x=wynZFnxyzmZFmwz
52 9 14 15 23 31 51 cbvrabcsfw xnZdomFn|ynZFnxy=wmZdomFm|zmZFmwz
53 7 52 eqtri D=wmZdomFm|zmZFmwz
54 nfrab1 _xxnZdomFn|ynZFnxy
55 7 54 nfcxfr _xD
56 nfcv _wD
57 nfcv _wsuprannZFnx<
58 10 18 nfmpt _xmZFmw
59 58 nfrn _xranmZFmw
60 nfcv _x<
61 59 16 60 nfsup _xsupranmZFmw<
62 32 mpteq2dv x=wnZFnx=nZFnw
63 nfcv _mFnw
64 63 37 41 cbvmpt nZFnw=mZFmw
65 64 a1i x=wnZFnw=mZFmw
66 62 65 eqtrd x=wnZFnx=mZFmw
67 66 rneqd x=wrannZFnx=ranmZFmw
68 67 supeq1d x=wsuprannZFnx<=supranmZFmw<
69 55 56 57 61 68 cbvmptf xDsuprannZFnx<=wDsupranmZFmw<
70 8 69 eqtri G=wDsupranmZFmw<
71 3 4 5 6 53 70 smfsuplem3 φGSMblFnS