Metamath Proof Explorer


Theorem smflimmpt

Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). A can contain m as a free variable, in other words it can be thought as an indexed collection A ( m ) . B can be thought as a collection with two indices B ( m , x ) . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimmpt.p m φ
smflimmpt.x x φ
smflimmpt.n n φ
smflimmpt.m φ M
smflimmpt.z Z = M
smflimmpt.a φ m Z A V
smflimmpt.b φ m Z x A B W
smflimmpt.s φ S SAlg
smflimmpt.l φ m Z x A B SMblFn S
smflimmpt.d D = x n Z m n A | m Z B dom
smflimmpt.g G = x D m Z B
Assertion smflimmpt φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smflimmpt.p m φ
2 smflimmpt.x x φ
3 smflimmpt.n n φ
4 smflimmpt.m φ M
5 smflimmpt.z Z = M
6 smflimmpt.a φ m Z A V
7 smflimmpt.b φ m Z x A B W
8 smflimmpt.s φ S SAlg
9 smflimmpt.l φ m Z x A B SMblFn S
10 smflimmpt.d D = x n Z m n A | m Z B dom
11 smflimmpt.g G = x D m Z B
12 11 a1i φ G = x D m Z B
13 10 a1i φ D = x n Z m n A | m Z B dom
14 nfv m n Z
15 1 14 nfan m φ n Z
16 5 uztrn2 n Z m n m Z
17 16 adantll φ n Z m n m Z
18 simpll φ n Z m n φ
19 6 mptexd φ m Z x A B V
20 18 17 19 syl2anc φ n Z m n x A B V
21 eqid m Z x A B = m Z x A B
22 21 fvmpt2 m Z x A B V m Z x A B m = x A B
23 17 20 22 syl2anc φ n Z m n m Z x A B m = x A B
24 23 dmeqd φ n Z m n dom m Z x A B m = dom x A B
25 nfv x n Z
26 2 25 nfan x φ n Z
27 nfv x m n
28 26 27 nfan x φ n Z m n
29 simplll φ n Z m n x A φ
30 17 adantr φ n Z m n x A m Z
31 simpr φ n Z m n x A x A
32 29 30 31 7 syl3anc φ n Z m n x A B W
33 eqid x A B = x A B
34 28 32 33 fnmptd φ n Z m n x A B Fn A
35 34 fndmd φ n Z m n dom x A B = A
36 24 35 eqtr2d φ n Z m n A = dom m Z x A B m
37 15 36 iineq2d φ n Z m n A = m n dom m Z x A B m
38 3 37 iuneq2df φ n Z m n A = n Z m n dom m Z x A B m
39 simpr φ m Z m Z
40 39 19 22 syl2anc φ m Z m Z x A B m = x A B
41 40 eqcomd φ m Z x A B = m Z x A B m
42 41 dmeqd φ m Z dom x A B = dom m Z x A B m
43 18 17 42 syl2anc φ n Z m n dom x A B = dom m Z x A B m
44 15 43 iineq2d φ n Z m n dom x A B = m n dom m Z x A B m
45 3 44 iuneq2df φ n Z m n dom x A B = n Z m n dom m Z x A B m
46 38 45 eqtr4d φ n Z m n A = n Z m n dom x A B
47 46 eleq2d φ x n Z m n A x n Z m n dom x A B
48 47 biimpa φ x n Z m n A x n Z m n dom x A B
49 48 adantrr φ x n Z m n A m Z B dom x n Z m n dom x A B
50 eliun x n Z m n A n Z x m n A
51 50 biimpi x n Z m n A n Z x m n A
52 51 adantl φ x n Z m n A n Z x m n A
53 52 adantrr φ x n Z m n A m Z B dom n Z x m n A
54 nfv n m Z B dom
55 3 54 nfan n φ m Z B dom
56 nfv n m Z x A B x dom
57 simpllr φ m Z B dom n Z x m n A m Z B dom
58 nfcv _ m x
59 nfii1 _ m m n A
60 58 59 nfel m x m n A
61 15 60 nfan m φ n Z x m n A
62 5 eluzelz2 n Z n
63 62 ad2antlr φ n Z x m n A n
64 eqid n = n
65 5 fvexi Z V
66 65 a1i φ n Z x m n A Z V
67 5 uzssd3 n Z n Z
68 67 ad2antlr φ n Z x m n A n Z
69 fvexd φ n Z x m n A m n x A B x V
70 eliinid x m n A m n x A
71 70 adantll φ n Z x m n A m n x A
72 18 adantlr φ n Z x m n A m n φ
73 17 adantlr φ n Z x m n A m n m Z
74 72 73 71 7 syl3anc φ n Z x m n A m n B W
75 33 fvmpt2 x A B W x A B x = B
76 71 74 75 syl2anc φ n Z x m n A m n x A B x = B
77 61 63 64 66 66 68 68 69 76 climeldmeqmpt3 φ n Z x m n A m Z x A B x dom m Z B dom
78 77 adantllr φ m Z B dom n Z x m n A m Z x A B x dom m Z B dom
79 57 78 mpbird φ m Z B dom n Z x m n A m Z x A B x dom
80 79 exp31 φ m Z B dom n Z x m n A m Z x A B x dom
81 55 56 80 rexlimd φ m Z B dom n Z x m n A m Z x A B x dom
82 81 adantrl φ x n Z m n A m Z B dom n Z x m n A m Z x A B x dom
83 53 82 mpd φ x n Z m n A m Z B dom m Z x A B x dom
84 49 83 jca φ x n Z m n A m Z B dom x n Z m n dom x A B m Z x A B x dom
85 84 ex φ x n Z m n A m Z B dom x n Z m n dom x A B m Z x A B x dom
86 47 biimpar φ x n Z m n dom x A B x n Z m n A
87 86 adantrr φ x n Z m n dom x A B m Z x A B x dom x n Z m n A
88 87 51 syl φ x n Z m n dom x A B m Z x A B x dom n Z x m n A
89 3 56 nfan n φ m Z x A B x dom
90 simpllr φ m Z x A B x dom n Z x m n A m Z x A B x dom
91 77 adantllr φ m Z x A B x dom n Z x m n A m Z x A B x dom m Z B dom
92 90 91 mpbid φ m Z x A B x dom n Z x m n A m Z B dom
93 92 exp31 φ m Z x A B x dom n Z x m n A m Z B dom
94 89 54 93 rexlimd φ m Z x A B x dom n Z x m n A m Z B dom
95 94 adantrl φ x n Z m n dom x A B m Z x A B x dom n Z x m n A m Z B dom
96 88 95 mpd φ x n Z m n dom x A B m Z x A B x dom m Z B dom
97 87 96 jca φ x n Z m n dom x A B m Z x A B x dom x n Z m n A m Z B dom
98 97 ex φ x n Z m n dom x A B m Z x A B x dom x n Z m n A m Z B dom
99 85 98 impbid φ x n Z m n A m Z B dom x n Z m n dom x A B m Z x A B x dom
100 2 99 rabbida3 φ x n Z m n A | m Z B dom = x n Z m n dom x A B | m Z x A B x dom
101 13 100 eqtrd φ D = x n Z m n dom x A B | m Z x A B x dom
102 10 eleq2i x D x x n Z m n A | m Z B dom
103 102 biimpi x D x x n Z m n A | m Z B dom
104 rabidim1 x x n Z m n A | m Z B dom x n Z m n A
105 103 104 51 3syl x D n Z x m n A
106 105 adantl φ x D n Z x m n A
107 nfcv _ n x
108 nfiu1 _ n n Z m n A
109 54 108 nfrabw _ n x n Z m n A | m Z B dom
110 10 109 nfcxfr _ n D
111 107 110 nfel n x D
112 3 111 nfan n φ x D
113 nfv n m Z x A B x = m Z B
114 1 14 60 nf3an m φ n Z x m n A
115 simp2 φ n Z x m n A n Z
116 115 62 syl φ n Z x m n A n
117 65 a1i φ n Z x m n A Z V
118 5 115 uzssd2 φ n Z x m n A n Z
119 fvexd φ n Z x m n A m n x A B x V
120 70 3ad2antl3 φ n Z x m n A m n x A
121 simpl1 φ n Z x m n A m n φ
122 115 16 sylan φ n Z x m n A m n m Z
123 121 122 120 7 syl3anc φ n Z x m n A m n B W
124 120 123 75 syl2anc φ n Z x m n A m n x A B x = B
125 114 116 64 117 117 118 118 119 124 climfveqmpt3 φ n Z x m n A m Z x A B x = m Z B
126 125 3exp φ n Z x m n A m Z x A B x = m Z B
127 126 adantr φ x D n Z x m n A m Z x A B x = m Z B
128 112 113 127 rexlimd φ x D n Z x m n A m Z x A B x = m Z B
129 106 128 mpd φ x D m Z x A B x = m Z B
130 129 eqcomd φ x D m Z B = m Z x A B x
131 2 101 130 mpteq12da φ x D m Z B = x x n Z m n dom x A B | m Z x A B x dom m Z x A B x
132 41 eqcomd φ m Z m Z x A B m = x A B
133 132 fveq1d φ m Z m Z x A B m x = x A B x
134 1 133 mpteq2da φ m Z m Z x A B m x = m Z x A B x
135 134 eqcomd φ m Z x A B x = m Z m Z x A B m x
136 135 eleq1d φ m Z x A B x dom m Z m Z x A B m x dom
137 2 45 136 rabbida2 φ x n Z m n dom x A B | m Z x A B x dom = x n Z m n dom m Z x A B m | m Z m Z x A B m x dom
138 133 eqcomd φ m Z x A B x = m Z x A B m x
139 1 138 mpteq2da φ m Z x A B x = m Z m Z x A B m x
140 139 fveq2d φ m Z x A B x = m Z m Z x A B m x
141 2 137 140 mpteq12df φ x x n Z m n dom x A B | m Z x A B x dom m Z x A B x = x x n Z m n dom m Z x A B m | m Z m Z x A B m x dom m Z m Z x A B m x
142 12 131 141 3eqtrd φ G = x x n Z m n dom m Z x A B m | m Z m Z x A B m x dom m Z m Z x A B m x
143 nfmpt1 _ m m Z x A B
144 nfcv _ x Z
145 nfmpt1 _ x x A B
146 144 145 nfmpt _ x m Z x A B
147 1 9 21 fmptdf φ m Z x A B : Z SMblFn S
148 eqid x n Z m n dom m Z x A B m | m Z m Z x A B m x dom = x n Z m n dom m Z x A B m | m Z m Z x A B m x dom
149 eqid x x n Z m n dom m Z x A B m | m Z m Z x A B m x dom m Z m Z x A B m x = x x n Z m n dom m Z x A B m | m Z m Z x A B m x dom m Z m Z x A B m x
150 143 146 4 5 8 147 148 149 smflim2 φ x x n Z m n dom m Z x A B m | m Z m Z x A B m x dom m Z m Z x A B m x SMblFn S
151 142 150 eqeltrd φ G SMblFn S