Metamath Proof Explorer


Theorem rabbida2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabbida2.1 xφ
rabbida2.2 φA=B
rabbida2.3 φψχ
Assertion rabbida2 φxA|ψ=xB|χ

Proof

Step Hyp Ref Expression
1 rabbida2.1 xφ
2 rabbida2.2 φA=B
3 rabbida2.3 φψχ
4 2 eleq2d φxAxB
5 4 3 anbi12d φxAψxBχ
6 1 5 abbid φx|xAψ=x|xBχ
7 df-rab xA|ψ=x|xAψ
8 df-rab xB|χ=x|xBχ
9 6 7 8 3eqtr4g φxA|ψ=xB|χ