Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabbida2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rabbida2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| rabbida2.3 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rabbida2 | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbida2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rabbida2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | rabbida2.3 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 5 | 4 3 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 6 | 1 5 | abbid | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) } ) |
| 7 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
| 8 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜒 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) } | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |